
BASIC STRUCTURE OF COMPUTERS

 Functional units

 Basic operational concepts

 Bus structures

 Performance and metrics

 Instructions and instruction sequencing

 Hardware

 Software interface

 Instruction set architecture

 Addressing modes

 RISC

 CISC

 ALU design

CS208 – COMPUTER ORGANIZATION AND

ARCHITECTURE

(Common to CSE and IT)

MODULE-1

 Fixed point and floating point operations

Downloaded from ktuassist.in

http://www.ktuassist.in

BASIC STRUCTURE OF COMPUTERS:
Computer Organization:

It refers to the operational units and their interconnections that realize the

architectural specifications.

It describes the function of and design of the various units of digital computer that

store and process information.

Computer hardware:

 Consists of electronic circuits, displays, magnetic and optical storage media,

electromechanical equipment and communication facilities.

Computer Architecture:

 It is concerned with the structure and behaviour of the computer.

 It includes the information formats, the instruction set and techniques for

addressing memory.

Functional Units

 A computer consists of 5 main parts.

 Input

 Memory

 Arithmetic and logic

 Output

 Control Units

Functional units of a Computer

Downloaded from ktuassist.in

http://www.ktustudents.in

 Input unit accepts coded information from human operators, from

electromechanical devices such as keyboards, or from other computers

over digital communication lines.

 The information received is either stored in the computers memory for

later reference or immediately used by the arithmetic and logic circuitry to

perform the desired operations.

 The processing steps are determined by a program stored in the memory.

 Finally the results are sent back to the outside world through the output

unit.

 All of these actions are coordinated by the control unit.

 The list of instructions that performs a task is called a program.

 Usually the program is stored in the memory.

 The processor then fetches the instruction that make up the program from

the memory one after another and performs the desire operations.

1.1 Input Unit:

 Computers accept coded information through input units, which read the

data.

 Whenever a key is pressed, the corresponding letter or digit is

automatically translated into its corresponding binary code and transmitted

over a cable to either the memory or the processor.

Some input devices are

 Joysticks

 Trackballs

 Mouses

 Microphones (Capture audio input and it is sampled & it is

converted into digital codes for storage and processing).

1.2.Memory Unit:

 It stores the programs and data.

 There are 2 types of storage classes

 Primary

 Secondary

Primary Storage:

 It is a fast memory that operates at electronic speeds.

 Programs must be stored in the memory while they are

being executed.

 The memory contains large no of semiconductor storage

cells.

 Each cell carries 1 bit of information.

 The Cells are processed in a group of fixed size called

Words.

 To provide easy access to any word in a memory,a distinct

address is associated with each word location.

Downloaded from ktuassist.in

http://www.ktustudents.in
http://www.ktuassist.in

 Addresses are numbers that identify successive locations.

 The number of bits in each word is called the word length.

 The word length ranges from 16 to 64 bits.

 There are 3 types of memory.They are

 RAM(Random Access Memory)

 Cache memory

 Main Memory

RAM:

Memory in which any location can be reached in short and fixed amount of time

after specifying its address is called RAM.

Time required to access 1 word is called Memory Access Time.

Cache Memory:

The small,fast,RAM units are called Cache. They are tightly coupled with

processor to achieve high performance.

Main Memory:

The largest and the slowest unit is called the main memory.

1.3. ALU:

Most computer operations are executed in ALU.

 Consider a example,

 Suppose 2 numbers located in memory are to be added. They are brought

into the processor and the actual addition is carried out by the ALU. The sum may then

be stored in the memory or retained in the processor for immediate use.

Access time to registers is faster than access time to the fastest cache unit in

memory.

1.4. Output Unit:

Its function is to send the processed results to the outside world. eg.Printer

Printers are capable of printing 10000 lines per minute but its speed is

comparatively slower than the processor.

1.5. Control Unit:

 The operations of Input unit, output unit, ALU are co-ordinate by the

control unit.

 The control unit is the Nerve centre that sends control signals to other

units and senses their states.

 Data transfers between the processor and the memory are also controlled

by the control unit through timing signals.

 The operation of computers are,

 The computer accepts information in the form of programs and

data through an input unit and stores it in the memory.

Downloaded from ktuassist.in

http://www.ktustudents.in
http://www.ktuassist.in

 Information stored in the memory is fetched, under program

control into an arithmetic and logic unit, where it is processed.

 Processed information leaves the computer through an output unit.

 All activities inside the machine are directed by the control unit.

BASIC OPERATIONAL CONCEPTS:

 The data/operands are stored in memory.

The individual instruction are brought from the memory to the processor, which

executes the specified operation.

Eg:1

Instructions are fetched from memory and the operand at LOC A is fetched. It is then

added to the contents of R0, the resulting sum is stored in Register R0.

Eg:2

 Transfer the contents of memory location A to the register R1.

Eg:3

Add the contents of Register R1 & R0 and places the sum into R0.

Fig:Connection between Processor and Main Memory

 Instruction Register(IR)

 Program Counter(PC)

 Add LOC A ,R1

 Load LOC A, R1

 Add R1 ,R0

Downloaded from ktuassist.in

http://www.ktustudents.in
http://www.ktuassist.in

 Memory Address Register(MAR)

 Memory Data Register(MDR)

Instruction Register (IR):

 It holds the instruction that is currently being executed.

 It generates the timing signals.

Program Counter (PC):

It contains the memory address of the next instruction to be fetched for execution.

Memory Address Register (MAR):

It holds the address of the location to be accessed.

Memory Data Register (MDR):

 It contains the data to written into or read out of the address location.

 MAR and MDR facilitates the communication with memory.

Operation Steps:

 The program resides in memory. The execution starts when PC is point to the first

instruction of the program.

 MAR read the control signal.

 The Memory loads the address word into MDR.The contents are transferred to

Instruction register. The instruction is ready to be decoded & executed.

Interrupt:

 Normal execution of the program may be pre-empted if some device requires

urgent servicing.

 Eg...Monitoring Device in a computer controlled industrial process may detect a

dangerous condition.

 In order to deal with the situation immediately, the normal execution of the

current program may be interrupted & the device raises an interrupt signal.

 The processor provides the requested service called the Interrupt Service

Routine(ISR).

 ISR save the internal state of the processor in memory before servicing the

interrupt because interrupt may alter the state of the processor.

 When ISR is completed, the state of the processor is restored and the interrupted

program may continue its execution.

Downloaded from ktuassist.in

http://www.ktustudents.in
http://www.ktuassist.in

BUS STRUCTURES:

A group of lines that serves as the connection path to several devices is called a Bus.

A Bus may be lines or wires or one bit per line.

The lines carry data or address or control signal.

There are 2 types of Bus structures. They are

Single Bus Structure

Multiple Bus Structure

3.1.Single Bus Structure:

It allows only one transfer at a time.

It costs low.

It is flexible for attaching peripheral devices.

Its Performance is low.

3.2.Multiple Bus Structure:

It allows two or more transfer at a time.

It costs high.

It provides concurrency in operation.

Its Performance is high.

The Buffer Register when connected with the bus, carries the information during transfer.

The Buffer Register prevents the high speed processor from being locked to a slow I/O

device during a sequence of data transfer.

Devices Connected with Bus Speed

Electro-mechanical decvices

 (Keyboard,printer) Slow

Magnetic / optical disk High

Memory & processing units Very High

Downloaded from ktuassist.in

http://www.ktustudents.in

SOFTWARE:

System Software is a collection of programs that are executed as needed to perform

function such as,

 Receiving & Interpreting user commands.

 Entering & editing application program and storing them as files in secondary

Storage devices.

 Managing the storage and retrieval of files in Secondary Storage devices.

 Running the standard application such as word processor, games, and

spreadsheets with data supplied by the user.

 Controlling I/O units to receive input information and produce output results.

 Translating programs from source form prepared by the user into object form.

 Linking and running user-written application programs with existing standard

library routines.

Software is of 2 types.They are

 Application program

 System program

Application Program:

It is written in high level programming language(C,C++,Java,Fortran)

The programmer using high level language need not know the details of machine

program instruction.

System Program:(Compiler,Text Editor,File)

Compiler:

It translates the high level language program into the machine language program.

Text Editor:

It is used for entering & editing the application program.

System software Component ->OS(OPERATING SYSTEM)

Operating System :

It is a large program or a collection of routines that is used to control the sharing

of and interaction among various computer units.

Functions of OS:

 Assign resources to individual application program.

 Assign memory and magnetic disk space to program and data files.

Downloaded from ktuassist.in

http://www.ktustudents.in

 Move the data between the memory and disk units.

 Handles I/O operation.

Fig:User Program and OS routine sharing of the process

Steps:

1. The first step is to transfer the file into memory.

2. When the transfer is completed, the execution of the program starts.

3. During time period „t0‟ to „t1‟ , an OS routine initiates loading the application

program from disk to memory, wait until the transfer is complete and then passes the

execution control to the application program & print the results.

4. Similar action takes place during „t2‟ to „t3‟ and „t4‟ to „t5‟.

5. At „t5‟, Operating System may load and execute another application program.

6. Similarly during „t0‟ to „t1‟ , the Operating System can arrange to print the

previous program‟s results while the current program is being executed.

7. The pattern of managing the concurrent execution of the several application

programs to make the best possible use of computer resources is called the multi-

programming or multi-tasking.

Downloaded from ktuassist.in

http://www.ktustudents.in

 PERFORMANCE:

For best performance, it is necessary to design the compiler, machine instruction

set and hardware in a co-ordinate way.

Elapsed Timethe total time required to execute the program is called the elapsed time.

 It depends on all the units in computer system.

Processor TimeThe period in which the processor is active is called the processor time.

 It depends on hardware involved in the execution of the instruction.

Fig: The Processor Cache

A Program will be executed faster if the movement of instruction and data

between the main memory and the processor is minimized, which is achieved by using

the Cache.

Processor clock:

ClockThe Processor circuits are controlled by a timing signal called a clock.

Clock CycleThe cycle defines a regular time interval called clock cycle.

Where, PLength of one clock cycle.

Basic Performance Equation:

Where, TPerformance Parameter

 RClock Rate in cycles/sec

Clock Rate,R =1/P

T = (N*S)/R

Downloaded from ktuassist.in

http://www.ktustudents.in

 NActual number of instruction execution

 SAverage number of basic steps needed to execute one machine instruction.

To achieve high performance,

 N,S<R

Pipelining and Superscalar operation:

PipeliningA Substantial improvement in performance can be achieved by overlapping

the execution of successive instruction using a technique called pipelining.

Superscalar Execution It is possible to start the execution of several instruction in

everey clock cycles (ie)several instruction can be executed in parallel by creating

parallel paths.This mode of operation is called the Superscalar execution.

Clock Rate:

There are 2 possibilities to increase the clock rate(R).They are,

 Improving the integrated Chip(IC) technology makes logical circuits faster.

 Reduce the amount of processing done in one basic step also helps to reduce the

clock period P.

Instruction Set:CISC AND RISC:

The Complex instruction combined with pipelining would achieve the best

performance.

It is much easier to implement the efficient pipelining in processor with simple

instruction set.

 Simple Instruction Set

 RISC CISC

(Reduced Instruction Set Computer) (Complex Instruction Set Computer)

It is the design of the instruction set It is the design of the instruction set

of a processor with simple instruction of a processor with complex instruction.

COM Compiler

 Translated into

High level

Language

Program

Machine

instruction

Simple Instruction set

RISC CISC

Downloaded from ktuassist.in

http://www.ktustudents.in

Functions of Compiler:

 The compiler re-arranges the program instruction to achieve better performance.

 The high quality compiler must be closely linked to the processor architecture to

reduce the total number of clock cycles.

Performance Measurement:

 The Performance Measure is the time it takes a computer to execute a given

benchmark.

 A non-profit organization called SPEC(System Performance Evaluation

Corporation) selects and publishes representative application program.

The Overall SPEC rating for the computer is given by,

 Where, n Number of programs in the suite

 (SPEC)irating for program I in the suite.

 INSTRUCTION AND INSTRUCTION SEQUENCING

A computer must have instruction capable of performing the following operations. They

are,

 Data transfer between memory and processor register.

 Arithmetic and logical operations on data.

 Program sequencing and control.

 I/O transfer.

Register Transfer Notation:

The possible locations in which transfer of information occurs are,

 Running time on reference computer

SPEC rating=

 Running time on computer under test

 n 1/n

SPEC rating= (Π SPECi)

 i=1

Downloaded from ktuassist.in

http://www.ktustudents.in

 Memory Location

 Processor register

 Registers in I/O sub-system.

Location Hardware Binary

Address

Eg Description

Memory LOC,PLACE,A,VAR2 R1[LOC] The contents of memory

location are transferred

to. the processor register.

Processor R0,R1,…. [R3][R1]+[R2] Add the contents of

register R1 &R2 and

places .their sum into

register R3.It is

.called Register Transfer

Notation.

I/O Registers DATAIN,DATAOUT Provides Status

information

Assembly Language Notation:

Assembly Language

Format

Description

Move LOC,R1 Transfers the contents of memory location to the processor

register R1.

Add R1,R2,R3 Add the contents of register R1 & R2 and places their sum

into register R3.

Basic Instruction Types:

Instruction

Type

Syntax Eg Description

Three Address Operation

Source1,Source2,Destination

Add A,B,C Add values of variable

A ,B & place the result

into c.

Two Address Operation Source,Destination Add A,B Add the values of A,B

& place the result into

B.

One Address Operation Operand Add B Content of

accumulator add with

content of B.

 Instruction Execution and Straight–line Sequencing:

Instruction Execution:

There are 2 phases for Instruction Execution. They are,

Downloaded from ktuassist.in

http://www.ktustudents.in

 Instruction Fetch

 Instruction Execution

Instruction Fetch:

The instruction is fetched from the memory location whose address is in PC.This is

placed in IR.

Instruction Execution:

Instruction in IR is examined to determine whose operation is to be performed.

Program execution Steps:

 To begin executing a program, the address of first instruction must be placed in

PC.

 The processor control circuits use the information in the PC to fetch & execute

instructions one at a time in the order of increasing order.

 This is called Straight line sequencing.During the execution of each

instruction,the PC is incremented by 4 to point the address of next instruction.

Fig: Program Execution

Branching:

 The Address of the memory locations containing the n numbers are symbolically

given as NUM1,NUM2…..NUMn.

Downloaded from ktuassist.in

http://www.ktustudents.in

 Separate Add instruction is used to add each number to the contents of register

R0.

 After all the numbers have been added,the result is placed in memory location

SUM.

Fig:Straight Line Sequencing Program for adding ‘n’ numbers

Using loop to add ‘n’ numbers:

 Number of enteries in the list „n‟ is stored in memory location M.Register R1 is

used as a counter to determine the number of times the loop is executed.

 Content location M are loaded into register R1 at the beginning of the program.

 It starts at location Loop and ends at the instruction.Branch>0.During each

pass,the address of the next list entry is determined and the entry is fetched and

added to R0.

Decrement R1

Downloaded from ktuassist.in

http://www.ktustudents.in

 It reduces the contents of R1 by 1 each time through the loop.

 A conditional branch instruction causes a branch only if a specified condition is

satisfied.

Fig:Using loop to add ‘n’ numbers:

Conditional Codes:

Result of various operation for user by subsequent conditional branch instruction

is accomplished by recording the required information in individual bits often called

Condition code Flags.

Commonly used flags:

Branch >0 Loop

Downloaded from ktuassist.in

http://www.ktustudents.in

 N(Negative)set to 1 if the result is –ve ,otherwise cleared to 0.

 Z(Zero) set to 1 if the result is 0 ,otherwise cleared to 0.

 V(Overflow) set to 1 if arithmetic overflow occurs ,otherwise cleared to 0.

 C(Carry)set to 1 if carry and results from the operation ,otherwise cleared to 0.

ADDRESSING MODES

The different ways in which the location of an operand is specified in an instruction is

called as Addressing mode.

Generic Addressing Modes:

 Immediate mode

 Register mode

 Absolute mode

 Indirect mode

 Index mode

 Base with index

 Base with index and offset

 Relative mode

 Auto-increment mode

 Auto-decrement mode

Implementation of Variables and Constants:

Variables:

The value can be changed as needed using the appropriate instructions.

There are 2 accessing modes to access the variables. They are

 Register Mode

 Absolute Mode

Register Mode:

The operand is the contents of the processor register.

The name(address) of the register is given in the instruction.

Absolute Mode(Direct Mode):

 The operand is in new location.

 The address of this location is given explicitly in the instruction.

Downloaded from ktuassist.in

http://www.ktustudents.in

Eg: MOVE LOC,R2

The above instruction uses the register and absolute mode.

The processor register is the temporary storage where the data in the register are accessed

using register mode.

The absolute mode can represent global variables in the program.

 Mode Assembler Syntax Addressing Function

Register mode Ri EA=Ri

Absolute mode LOC EA=LOC

Where EA-Effective Address

Constants:

 Address and data constants can be represented in assembly language using Immediate

Mode.

Immediate Mode.

The operand is given explicitly in the instruction.

Eg: Move 200 immediate ,R0

It places the value 200 in the register R0.The immediate mode used to specify the value

of source operand.

In assembly language, the immediate subscript is not appropriate so # symbol is used.

It can be re-written as

Move #200,R0

Assembly Syntax: Addressing Function

Immediate #value Operand =value

Indirection and Pointers:

Instruction does not give the operand or its address explicitly.Instead it provides

information from which the new address of the operand can be determined.This address

is called effective Address(EA) of the operand.

Downloaded from ktuassist.in

http://www.ktustudents.in

Indirect Mode:

 The effective address of the operand is the contents of a register .

 We denote the indirection by the name of the register or new address given in the

instruction.

Fig:Indirect Mode

 Add (R1),R0

 …

 Operand

Address of an operand(B) is stored into R1 register.If we want this operand,we can get it

through register R1(indirection).

The register or new location that contains the address of an operand is called the pointer.

 Mode Assembler Syntax Addressing Function

Indirect Ri , LOC EA=[Ri] or EA=[LOC]

Indexing and Arrays:

Index Mode:

 The effective address of an operand is generated by adding a constant value to the

contents of a register.

 The constant value uses either special purpose or general purpose register.

 We indicate the index mode symbolically as,

 X(Ri)

Where X – denotes the constant value contained in the instruction

 Ri – It is the name of the register involved.

The Effective Address of the operand is,

EA=X + [Ri]

 Add (A),R0

 B

 Operand

Downloaded from ktuassist.in

http://www.ktustudents.in

The index register R1 contains the address of a new location and the value of X defines

an offset(also called a displacement).

To find operand,

 First go to Reg R1 (using address)-read the content from R1-1000

 Add the content 1000 with offset 20 get the result.

 1000+20=1020

 Here the constant X refers to the new address and the contents of index register

define the offset to the operand.

 The sum of two values is given explicitly in the instruction and the other is stored

in register.

Eg: Add 20(R1) , R2 (or) EA=>1000+20=1020

Index Mode Assembler Syntax Addressing Function

Index X(Ri) EA=[Ri]+X

Base with Index (Ri,Rj) EA=[Ri]+[Rj]

Base with Index and offset X(Ri,Rj) EA=[Ri]+[Rj] +X

Relative Addressing:

It is same as index mode. The difference is, instead of general purpose register, here we

can use program counter(PC).

Relative Mode:

 The Effective Address is determined by the Index mode using the PC in place of

the general purpose register (gpr).

 This mode can be used to access the data operand. But its most common use is to

specify the target address in branch instruction.Eg. Branch>0 Loop

 It causes the program execution to goto the branch target location. It is identified

by the name loop if the branch condition is satisfied.

Mode Assembler Syntax Addressing Function

Relative X(PC) EA=[PC]+X

Additional Modes:

There are two additional modes. They are

Downloaded from ktuassist.in

http://www.ktustudents.in

 Auto-increment mode

 Auto-decrement mode

Auto-increment mode:

 The Effective Address of the operand is the contents of a register in the

instruction.

 After accessing the operand, the contents of this register is automatically

incremented to point to the next item in the list.

Mode Assembler syntax Addressing Function

Auto-increment (Ri)+ EA=[Ri];

 Increment Ri

Auto-decrement mode:

 The Effective Address of the operand is the contents of a register in the

instruction.

 After accessing the operand, the contents of this register is automatically

decremented to point to the next item in the list.

Mode Assembler Syntax Addressing Function

Auto-decrement -(Ri) EA=[Ri];

 Decrement Ri

CISC
Pronounced sisk, and stands for Complex Instruction Set Computer. Most PC's use CPU

based on this architecture. For instance Intel and AMD CPU's are based on CISC

architectures.

Typically CISC chips have a large amount of different and complex instructions. The

philosophy behind it is that hardware is always faster than software, therefore one should

make a powerful instruction set, which provides programmers with assembly instructions

to do a lot with short programs.

In common CISC chips are relatively slow (compared to RISC chips) per instruction, but

use little (less than RISC) instructions.

RISC
Pronounced risk, and stands for Reduced Instruction Set Computer. RISC chips evolved

around the mid-1980 as a reaction at CISC chips. The philosophy behind it is that almost

no one uses complex assembly language instructions as used by CISC, and people mostly

use compilers which never use complex instructions. Apple for instance uses RISC chips.

Therefore fewer, simpler and faster instructions would be better, than the large, complex

and slower CISC instructions. However, more instructions are needed to accomplish a

task.

An other advantage of RISC is that - in theory - because of the more simple instructions,

Downloaded from ktuassist.in

http://www.ktustudents.in

RISC chips require fewer transistors, which makes them easier to design and cheaper to

produce.

Finally, it's easier to write powerful optimised compilers, since fewer instructions exist.

RISC vs CISC
There is still considerable controversy among experts about which architecture is better.

Some say that RISC is cheaper and faster and therefor the architecture of the future.

Others note that by making the hardware simpler, RISC puts a greater burden on the

software. Software needs to become more complex. Software developers need to write

more lines for the same tasks.

Therefore they argue that RISC is not the architecture of the future, since conventional

CISC chips are becoming faster and cheaper anyway.

RISC has now existed more than 10 years and hasn't been able to kick CISC out of the

market. If we forget about the embedded market and mainly look at the market for PC's,

workstations and servers I guess a least 75% of the processors are based on the CISC

architecture. Most of them the x86 standard (Intel, AMD, etc.), but even in the mainframe

territory CISC is dominant via the IBM/390 chip. Looks like CISC is here to stay …

Is RISC than really not better? The answer isn't quite that simple. RISC and CISC

architectures are becoming more and more alike. Many of today's RISC chips support

just as many instructions as yesterday's CISC chips. The PowerPC 601, for example,

supports more instructions than the Pentium. Yet the 601 is considered a RISC chip,

while the Pentium is definitely CISC. Further more today's CISC chips use many

techniques formerly associated with RISC chips.

ALU Design

In computing an arithmetic logic unit (ALU) is a digital circuit that performs arithmetic

and logical operations. The ALU is a fundamental building block of the central

processing unit (CPU) of a computer, and even the simplest microprocessors contain one

for purposes such as maintaining timers. The processors found inside modern CPUs and

graphics processing units (GPUs) accommodate very powerful and very complex ALUs;

a single component may contain a number of ALUs.

Mathematician John von Neumann proposed the ALU concept in 1945, when he wrote a

report on the foundations for a new computer called the EDVAC. Research into ALUs

remains an important part of computer science, falling under Arithmetic and logic

structures in the ACM Computing Classification System

Numerical systems

An ALU must process numbers using the same format as the rest of the digital circuit.

The format of modern processors is almost always the two's complement binary number

representation. Early computers used a wide variety of number systems, including ones'

complement, Two's complement sign-magnitude format, and even true decimal systems,

with ten tubes per digit.

Downloaded from ktuassist.in

http://www.ktustudents.in

ALUs for each one of these numeric systems had different designs, and that influenced

the current preference for two's complement, as this is the representation that makes it

easier for the ALUs to calculate additions and subtractions.

The ones' complement and Two's complement number systems allow for subtraction to

be accomplished by adding the negative of a number in a very simple way which negates

the need for specialized circuits to do subtraction; however, calculating the negative in

Two's complement requires adding a one to the low order bit and propagating the carry.

An alternative way to do Two's complement subtraction of A-B is present a 1 to the carry

input of the adder and use ~B rather than B as the second input.

Practical overview

Most of a processor's operations are performed by one or more ALUs. An ALU loads

data from input registers, an external Control Unit then tells the ALU what operation to

perform on that data, and then the ALU stores its result into an output register. Other

mechanisms move data between these registers and memory.

 Simple operations

A simple example arithmetic logic unit (2-bit ALU) that does AND, OR, XOR, and

addition

Most ALUs can perform the following operations:

 Integer arithmetic operations (addition, subtraction, and sometimes multiplication

and division, though this is more expensive)

 Bitwise logic operations (AND, NOT, OR, XOR)

 Bit-shifting operations (shifting or rotating a word by a specified number of bits

to the left or right, with or without sign extension). Shifts can be interpreted as

multiplications by 2 and divisions by 2.

Complex operations

Engineers can design an Arithmetic Logic Unit to calculate any operation. The more

complex the operation, the more expensive the ALU is, the more space it uses in the

processor, the more power it dissipates. Therefore, engineers compromise. They make the

ALU powerful enough to make the processor fast, but yet not so complex as to become

prohibitive. For example, computing the square root of a number might use:

1. Calculation in a single clock Design an extraordinarily complex ALU that

calculates the square root of any number in a single step.

2. Calculation pipeline Design a very complex ALU that calculates the square root

of any number in several steps. The intermediate results go through a series of

circuits arranged like a factory production line. The ALU can accept new numbers

to calculate even before having finished the previous ones. The ALU can now

Downloaded from ktuassist.in

http://www.ktustudents.in

produce numbers as fast as a single-clock ALU, although the results start to flow

out of the ALU only after an initial delay.

3. interactive calculation Design a complex ALU that calculates the square root

through several steps. This usually relies on control from a complex control unit

with built-in microcode

4. Co-processor Design a simple ALU in the processor, and sell a separate

specialized and costly processor that the customer can install just beside this one,

and implements one of the options above.

5. Software libraries Tell the programmers that there is no co-processor and there is

no emulation, so they will have to write their own algorithms to calculate square

roots by software.

6. Software emulation Emulate the existence of the co-processor, that is, whenever

a program attempts to perform the square root calculation, make the processor

check if there is a co-processor present and use it if there is one; if there isn't one,

interrupt the processing of the program and invoke the operating system to

perform the square root calculation through some software algorithm.

The options above go from the fastest and most expensive one to the slowest and least

expensive one. Therefore, while even the simplest computer can calculate the most

complicated formula, the simplest computers will usually take a long time doing that

because of the several steps for calculating the formula.

Powerful processors like the Intel Core and AMD64 implement option #1 for several

simple operations, #2 for the most common complex operations and #3 for the extremely

complex operations.

Inputs and outputs

The inputs to the ALU are the data to be operated on (called operands) and a code from

the control unit indicating which operation to perform. Its output is the result of the

computation.

In many designs the ALU also takes or generates as inputs or outputs a set of condition

codes from or to a status register. These codes are used to indicate cases such as carry-in

or carry-out, overflow, divide-by-zero, etc.

ALUs vs. FPUs

A Floating Point Unit also performs arithmetic operations between two values, but they

do so for numbers in floating point representation, which is much more complicated than

the two's complement representation used in a typical ALU. In order to do these

calculations, a FPU has several complex circuits built-in, including some internal ALUs.

In modern practice, engineers typically refer to the ALU as the circuit that performs

integer arithmetic operations (like two's complement and BCD). Circuits that calculate

Downloaded from ktuassist.in

http://www.ktustudents.in
http://www.ktuassist.in

more complex formats like floating point, complex numbers, etc. usually receive a more

specific name such as FPU.

FIXED POINT NUMBER AND OPERATION

In computing, a fixed-point number representation is a real data type for a number that

has a fixed number of digits after (and sometimes also before) the radix point (e.g., after

the decimal point '.' in English decimal notation). Fixed-point number representation can

be compared to the more complicated (and more computationally demanding) floating

point number representation.

Fixed-point numbers are useful for representing fractional values, usually in base 2 or

base 10, when the executing processor has no floating point unit (FPU) or if fixed-point

provides improved performance or accuracy for the application at hand. Most low-cost

embedded microprocessors and microcontrollers do not have an FPU.

Representation

A value of a fixed-point data type is essentially an integer that is scaled by a specific

factor determined by the type. For example, the value 1.23 can be represented as 1230 in

a fixed-point data type with scaling factor of 1/1000, and the value 1230000 can be

represented as 1230 with a scaling factor of 1000. Unlike floating-point data types, the

scaling factor is the same for all values of the same type, and does not change during the

entire computation.

The scaling factor is usually a power of 10 (for human convenience) or a power of 2 (for

computational efficiency). However, other scaling factors may be used occasionally, e.g.

a time value in hours may be represented as a fixed-point type with a scale factor of

1/3600 to obtain values with one-second accuracy.

The maximum value of a fixed-point type is simply the largest value that can be

represented in the underlying integer type, multiplied by the scaling factor; and similarly

for the minimum value. For example, consider a fixed-point type represented as a binary

integer with b bits in two's complement format, with a scaling factor of 1/2
f
 (that is, the

last f bits are fraction bits): the minimum representable value is −2
b-1

/2
f
 and the maximum

value is (2
b-1

-1)/2
f
.

Operations

To convert a number from a fixed point type with scaling factor R to another type with

scaling factor S, the underlying integer must be multiplied by R and divided by S; that is,

multiplied by the ratio R/S. Thus, for example, to convert the value 1.23 = 123/100 from a

type with scaling factor R=1/100 to one with scaling factor S=1/1000, the underlying

integer 123 must be multiplied by (1/100)/(1/1000) = 10, yielding the representation

1230/1000. If S does not divide R (in particular, if the new scaling factor R is less than the

Downloaded from ktuassist.in

http://www.ktustudents.in
http://www.ktuassist.in

original S), the new integer will have to be rounded. The rounding rules and methods are

usually part of the language's specification.

To add or subtract two values the same fixed-point type, it is sufficient to add or subtract

the underlying integers, and keep their common scaling factor. The result can be exactly

represented in the same type, as long as no overflow occurs (i.e. provided that the sum of

the two integers fits in the underlying integer type.) If the numbers have different fixed-

point types, with different scaling factors, then one of them must be converted to the

other before the sum.

To multiply two fixed-point numbers, it suffices to multiply the two underlying integers,

and assume that the scaling factor of the result is the product of their scaling factors. This

operation involves no rounding. For example, multiplying the numbers 123 scaled by

1/1000 (0.123) and 25 scaled by 1/10 (2.5) yields the integer 123×25 = 3075 scaled by

(1/1000)×(1/10) = 1/10000, that is 3075/10000 = 0.3075. If the two operands belong to

the same fixed-point type, and the result is also to be represented in that type, then the

product of the two integers must be explicitly multiplied by the common scaling factor; in

this case the result may have to be rounded, and overflow may occur. For example, if the

common scaling factor is 1/100, multiplying 1.23 by 0.25 entails multiplying 123 by 25

to yield 3075 with an intermediate scaling factor if 1/10000. This then must be multiplied

by 1/100 to yield either 31 (0.31) or 30 (0.30), depending on the rounding method used,

to result in a final scale factor of 1/100.

To divide two fixed-point numbers, one takes the integer quotient of their underlying

integers, and assumes that the scaling factor is the quotient of their scaling factors. The

first division involves rounding in general. For example, division of 3456 scaled by 1/100

(34.56) by 1234 scaled by 1/1000 (1.234) yields the integer 3456÷1234 = 3 (rounded)

with scale factor (1/100)/(1/1000) = 10, that is, 30. One can obtain a more accurate result

by first converting the dividend to a more precise type: in the same example, converting

3456 scaled by 1/100 (34.56) to 3456000 scaled by 1/100000, before dividing by 1234

scaled by 1/1000 (1.234), would yield 3456000÷1234 = 2801 (rounded) with scaling

factor (1/100000)/(1/1000) = 1/100, that is 28.01 (instead of 290). If both operands and

the desired result are represented in the same fixed-point type, then the quotient of the

two integers must be explicitly divided by the common scaling factor.

Precision loss and overflow

Because fixed point operations can produce results that have more bits than the operands

there is possibility for information loss. For instance, the result of fixed point

multiplication could potentially have as many bits as the sum of the number of bits in the

two operands. In order to fit the result into the same number of bits as the operands, the

answer must be rounded or truncated. If this is the case, the choice of which bits to keep

is very important. When multiplying two fixed point numbers with the same format, for

instance with I integer bits, and Q fractional bits, the answer could have up to 2I integer

bits, and 2Q fractional bits.

Downloaded from ktuassist.in

http://www.ktustudents.in

For simplicity, fixed-point multiply procedures use the same result format as the

operands. This has the effect of keeping the middle bits; the I-number of least significant

integer bits, and the Q-number of most significant fractional bits. Fractional bits lost

below this value represent a precision loss which is common in fractional multiplication.

If any integer bits are lost, however, the value will be radically inaccurate.

Some operations, like divide, often have built-in result limiting so that any positive

overflow results in the largest possible number that can be represented by the current

format. Likewise, negative overflow results in the largest negative number represented by

the current format. This built in limiting is often referred to as saturation.

Some processors support a hardware overflow flag that can generate an exception on the

occurrence of an overflow, but it is usually too late to salvage the proper result at this

point.

FLOATING POINT NUMBERS & OPERATIONS

Floating point Representation:

To represent the fractional binary numbers, it is necessary to consider binary point.If

binary point is assumed to the right of the sign bit ,we can represent the fractional binary

numbers as given below,

With this fractional number system,we can represent the fractional numbers in the

following range,

 -1 < F <1 – 2
-(n-1)

 The binary point is said to be float and the numbers are called floating point

numbers.

 The position of binary point in floating point numbers is variable and hence

numbers must be represented in the specific manner is referred to as floating point

representation.

 The floating point representation has three fields.They are,

 Sign

 Significant digits and

 Exponent.

B= (b0 * 2
0
 +b-1 * 2

-1
 + b-2 * 2

-2
 +….+ b-(n-1) * 2

-(n-1)
)

Downloaded from ktuassist.in

http://www.ktustudents.in

Eg: 111101.10001101.111101100110 *2
5

Where ,

2
5

 Exponent and scaling factor

Downloaded from ktuassist.in

http://www.ktustudents.in
http://www.ktuassist.in

PART A

1.Difference between Computer architecture and computer organization.

2.Discusss the various functions of computer.

3.List out the various instruction type.

4.What is addressing mode.

5.Difference between Stack and Queue.

6.What are the different types of Assembler directive?

7.A computer executes 3 instructions with the length of 6cycles/sec which performs its

instruction in 4 steps.Calculate the performance.

8.What is pipelining?

9.What is program Counter?

10.What is bus and explain its types.

11. Give an example each of zero-address, one-address, two-address, and three-address

instructions.

12. Which data structures can be best supported using (a) indirect addressing mode (b)

indexed addressing mode?

PART B

1.Explain the functional Units of a Computer.

2.What is Addressing Mode?Explain the different types of addressing mode.

3.What is Instruction Type?Write short notes on various instruction formats.

4.What is byte addressability?Explain the various types.

5.Write short notes on:

 a. IR b..MAR

 c.MDR d.PC

 e.Interrupt f.Pipelining and Superscalar operation

6. Explain in detail the different types of instructions that are supported in a typical

processor.

MODULE-I
MODEL QP

Downloaded from ktuassist.in

http://www.ktustudents.in

