CS 202 Computer Organization and Architecture
Module 5
Processor Logic Design

Sheena N

Assistant Professor
Dept. of CSE
College of Engineering & Management Punnapra

sheena.cemp@gmail.com

May 1, 2017

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 1/39

http://www.ktuassist.in

Overview

@ Register Trasfer Logic

© Inter Register Transfer

© Arithmetic Microoperation
@ Logic Micooperation

© Shift Micooperation

@ Conditional Control Statements

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 2 /39

Register Transfer Logic

o Digital system
e Sequential logic system constructed with flip flops and gates
e Specified by means of state table
o Difficult to specify a large digital system with state table because of
the huge number of states.
@ Modular approach

e System is partitioned into modular subsytems with a specific functional
task

e Modules constructed from such digital functions are registers, counters,
decorders, multiplexers, arithmetic elements and control logic

e Modules are interconnected with common data and control paths to
form a digital computer system .

o Typical digital system module - processor unit of a digital computer

@ To decribe Digital system module high level mathemetical notations
are used - Register Trasfer Logic

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 3 /39

Register Transfer Logic (cont.)

@ Register Trasfer Logic

o Regiters are the primitive component

o Information flow and processing tasks among the data stored in
registers are described in precise and concise mannner

o Uses set of expressions & statements which resemble the statements in
programming language

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 4 /39

http://www.ktuassist.in

Register Transfer Logic (cont.)

@ Components that form the basis of register transfer logic

© The set of registers in the system and their functions

© The binary coded information stored in the registers

© The operations performed on the information stored in the registers -
Microoperations

© The control functions that initiate the sequence of operations

Sheena N (AP in CSE, CEMP) Module 5 May 1,2017 5/ 39

Register Transfer Logic (cont.)

@ Registers

e Emcompasses all type of registers such as shift registers, counters and
memory units

e Counter :- Funtion is to increment by 1 the information stored within it

e Memory unit :- Collection of storage registers where information can be
stored

e Flip flop :- stand alone flip flop is a 1 bit register

o Flip flops and associated gates of any sequential circuit are called a
register

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 6/ 39

Register Transfer Logic

Register Transfer Logic (cont.)

@ The binary coded information stored in the registers

e Binary information stored in registers may be binary numbers, binary
coded decimal numbers, alphanumeric characters, control information
or any other binary coded information

e The operations performed on the data stored in registers depend upon
the type of data

e Numbers are manipulated with arithmetic operations

e Control information is manipulated with logic operations such as
setting and clearing specified bits in the register

Sheena N (AP in CSE, CEMP) Module 5 May 1,2017 7 /39

http://www.ktuassist.in

Register Transfer Logic (cont.)

@ Microoperation

o Operations performed in data stored in registers

o Elementary operation that can be performed parallel during one clock
pulse period

e The result of operation may replace the previous binary information of
a register or may be transfered to another register

e Eg. of microoperation - Shift, count, clear, add & load

e A counter with parallel load - perform microoperations increment &
load

o Bidirectional shift register - Peform shift left & shift right
microoperation

e Binry parallel adder - Used for implementing add micooperation on the
content of two registers that hold binary numbers

e A microoperation requires one clock pulse for the execution if the
operation done in parallel

@ In serial computer a microoperation requires a number of clock pulses
equal to the word time in the system.

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 8 /39

https://play.google.com/store/apps/details?id=ktuassist.in

Register Transfer Logic (cont.)

@ Control information

e Timing signals that sequence the operations one at a time

e Certain conditions depend on the result of previous operations
determine the state of control functions

o Control function is a binary variable that when in one binary state
initiates an opeartion and when in the other binary state inhibits the
operation

o Register transfer language(Computer hardware description language)

e Symbolic notation used for registers, for specifying operations on the
contents of registers and specifying control functions

e A statement in a register transfer language consists of control function
and a list of microoperations

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 9 /39

Register Transfer Logic (cont.)

Types of micooperations in digital system
o Interregister transfer microoperation

@ Do not change the information content when the binary information
moves from one register to another

o Arithmetic operation
@ Perform arithmetic on numbers stored in registers
e Logic microoperation

o Perform operations such as AND and OR on individual pairs of bits
stored in registers

e Shift microoperation

o Specify operations for shift registers

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 10 / 39

https://play.google.com/store/apps/details?id=ktuassist.in

Register Transfer Logic (cont.)

Categories of binary information found in registers of digital
computers

@ Numerical data such as binary numbers or binary coded decimal
numbers used in arithmetic computations

@ Nonnumerical data such as alphanumeric characters or any other
binary coded symbols used for special applications

@ Instruction codes, addresses and any other control information used
to specify the data processing requirements in the system

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 11 /39

Inter Register Transfer

Inter Register Transfer

@ Registers in a digital system are designated by capital
letters(sometimes followed by numerals) to denote function of register

@ Eg :- Register that holds address of memory - Memory address
register designated by MAR
other designations are A, B, R1, R2 and IR

@ The cells or flipflops of n-bit register are numbered in sequence from
1 to n (from 0 to n-1) starting either from left or from right

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 12 /39

Inter Register Transfer

Inter Register Transfer (cont.)

@ 4 ways to represent register

e Rectangular box with name of the register inside

e The individual cells is assigned a letter with a subscript number

e The numbering of cells from right to left can be marked on top of the
box
16 bit register is partitioned into 2 parts , bits 1 to 8 are assigned the
letter L(for low) and bits 9 to 16 are assigned the letter H(for high)

I TR 2 B R A P B

(a) Register A (b) Showing individual cells
12 1 16 98 1
[MBR J I PC(H) I PC(L) I
(c) Numbering of cells (d) Portions of a register

Figure: Block diagram of registers

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 13 /39

http://www.ktuassist.in

Inter Register Transfer

Inter Register Transfer (cont.)

@ Registers can be specified in a register transfer language with a
declaration statement

@ Eg :- Registers in the above figure can be defined with declaration

statement such as
DECLARE REGISTER A(8), MBR(12), PC(16)
DECLARE SUBREGISTER PC(L) = PC(1-8), PC(H) = PC(9-16)

@ Information transfer from one register to another is designated in
sybolic form by means of replacement operator

A+ B

Transfer of the contents of rgister B to register A.
Content of source register do not change

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017

14 / 39

Inter Register Transfer

Inter Register Transfer (cont.)

@ Sometimes transfer occures under a predefined condition called
control function which is a boolean function equal to 1 or 0

o Eg:-
xXTi:A« B
Control function terminated with a colon
Transfer occurs when x’ Ti=1ie,x=0and T1 =1

I Register 8 |
Control
X Load
m il Register A
T

Figure: hardware implementation of the statement xTi:A«B

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 15 / 39

Inter Register Transfer

Inter Register Transfer (cont.)

Table: Basic symbols for register trnsfer logic

Symbol Description Examples
Letters (and numerals) Denotes a register A, MBR, R2
Subscript Denotes a bit of a register Ay, Bg
Parentheses {) Denotes a portion of a register PC(H), MBR(OP)
Arrow « Denotes transfer of informatior: A« B
Colon : Terminates a control function x'Tg:

Comma , Separates two microoperations A« B B4

Square brackets [] Specifies an address for memory transfer MBR «— M|[MAR]

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 16 / 39

Inter Register Transfer

Inter Register Transfer (cont.)
@ Destination register receives information from two sources but not at
the same time
T1 tC+ A
T,:C+ B

4 1 4 1

I Register B Register A l
1]

Select 1
Quad 2 x 1
Enable MUX
(Fig. 5-17)
4 1
=
y Load Register C

T

Figure: Use of multiplexer to transfer information from two sources into a
single destination

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 17 / 39

Inter Register Transfer

Inter Register Transfer (cont.)

Bus transfer

@ Paths must be provided to transfer information from one register to
another in digital system

,//":‘\T S
~ - {_:,[//:”_I

Figure: Transfer among three registers

o Eg :- Data tranfer among 3 registers - 6 data paths - each register
requires a multiplexer to select between 2 sources
If a register contains n flip flops - 6n lines - 3 multiplexers

@ Number of registers increases number of interconnection lines and
multiplexer increases

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 18 / 39

Inter Register Transfer

Inter Register Transfer (cont.)

@ If restrict transfer one at a time then the number of paths among
registers can be reduced

f

1
2 z [

Sy

54

Figure: Transfer through one common line

@ Each flipflop is connected to a common line through an electronic
circuit that acts as a switch

@ This scheme can be extended to registers with n flip flops and it
requires n common lines

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 19 /39

Inter Register Transfer

Inter Register Transfer (cont.)

Bus :- Group of wires through which binary information is transfered

For parallel transfer number of lines in the bus is equal to the number
of bits in the registers

A common bus system can be constructed with multiplexers and
decoder

Multiplexer selects one of the source register for the bus

Decoder selects one destination register to transfer the information
from the bus

The 4-bits in the same significant position in the registers go through
4-to-1 line multiplexer to form one line of the bus

2 multiplexers are shown in figure - one for high order significant bit
and other for low order significant bits

For registers with n bits n multiplexers are needed to produce n line
bus

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 20 / 39

Inter Register Transfer

Inter Register Transfer (cont.)

n lines in the bus are connected to the n inputs of all registers

The transfer of information from the bus into one destination register
is accomplished by activting the load control of that register

The particular load control activated is selected by outputs of the
decoder when enabled.

If decoder is not enabled no information will be transferred even
though the multiplexers place the contents of a source register onto
the bus

Eg :- The statement C < A The control function that enables this
transfer must select register A for the bus and register C for the
destination

The multiplexer and decoder selects inputs must be

select source = 00(MUXs select register A)

select destination = 10 (Decoder selects register C)

Decoder enable =0 (Decoder is enabled)

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 21 /39

Inter Register Transfer

Inter Register Transfer (cont.)

Figure: Bus system four registers

@ on the next clock pulse the content of A, being on the bus, are loaded
into register C

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 22 /39

Inter Register Transfer

Inter Register Transfer (cont.)

Memory transfer
@ Read operation :- Transfer of information from memory register to
outside enviornment
@ Write operation :- Transfer of new information into memory register
selected

@ Memory register is selected by an address Memory register is
symbolised by the letter M

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 23 /39

https://play.google.com/store/apps/details?id=ktuassist.in

Inter Register Transfer

Inter Register Transfer (cont.)

@ Only one address register is connected to the address terminals of
memory

e This register specifies the address

e The letter M stands by itself in a statement designate a memory
register selected by the address presently in MAR

e A single memory buffer register MBR used to transfer data into and
out of memory

e 2 memory transfer operations - Read & Write

o Read operation :- Transfer of information from selected memory
register M specified by the address in MAR into MBR

R:MBR + M

R is the control function that initiate the read operation
o Write operation :- Trasfer of information from MBR into the register M
selected by the address presently in MAR

W : M+ MBR
W is the control function that intiate write operation

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 24 / 39

Inter Register Transfer

Inter Register Transfer (cont.)

-«—— Read

MAR »{ Memory unit

Y

MBR

Figure: Memory unit that communicate with two external registers

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 25 /39

Inter Register Transfer

Inter Register Transfer (cont.)

@ The address lines form a common bus system to allow many registers
to specify an address
o The register specifies the address will be enclosed within square bracket
after the symbol M
o The address to the memory unit comes from an address bus
o 4 registers are connected to the bus and any one may supply an address
e The output of the memory can go to any one of 4 registers selected by
the decoder
e Data input to the memory comes from the data bus which selects one
of the four registers
o Write operation :- The transfer of information from register B2 to a
memory word selected by the register Al is
W: M[A1] + B2
o Read operation :- R : B0 + M[A3]

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 26 / 39

Inter Register Transfer

Inter Register Transfer (cont.)

Inputs

Read

Data bus

Select

Destination
Select 1 decoder

Figure: Memory unit that communicate with multiple registers

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017

27 / 39

https://play.google.com/store/apps/details?id=ktuassist.in

Arithmetic Microoperation

Arithmetic Microoperation

@ Basic arithmetic microoperations - add, subtract, complement & shift
@ The arithmetic add microoperations are defined by the statement
F+—A+B

It states that the contents of register A are to be added to the
contents of register B and the sum is transfered to register F

@ To implement this statement require 3 registers A, B and F and a
digital functon that performs the addition operation such as parallel
addder

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 28 / 39

Arithmetic Microoperation

Arithmetic Microoperation (cont.)

Table: Arithmetic microoperation

Symbolic

designation Description
FeA+ B Contents of 4 plus B transferred to F
F—A4A-B Contents of 4 minus B transferred to F
B+—F Complement register B (1's complement)
BB +1 Form the 2’s complement of the contents of register B
Fe—A+ B +1 A plus the 2's complement of B transferred to F
Ae—Ad+1 Increment the contents of A by 1 (count up)
Ae—4 -1 Decrement the contents of 4 by 1 (count down)

@ Increment micropoperation symbolised by plus-one & implemented
with an up counter

@ Decrement micropoperation symbolised by minus-one & implemented
with an down counter

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 29 / 39

Arithmetic Microoperation

Arithmetic Microoperation (cont.)

@ There must be a direct relationship between the statements written in
a register transfer language and the registers and digital functions
which are required for the implementation

@ Consider the statements

T,:A« A+ B
To: A At 1

Timing variable T initiates an operation to add the contents of
register B to the present contents of A with a parallel adder.
Timing variable Ts increments register A with a counter.

The transfer of the sum from parallel adder into register A can be
activated with a load input in the register.

Register be a counter with parallel load capability.

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 30/ 39

Arithmetic Microoperation

Arithmetic Microoperation (cont.)

@ The parallel adder receives input information from registers A and B.
The sum bits from the parallel adder are applied to the inputs of A
and timing variable T» loads the sum into register A. Timing variable
Ts increments there by enabling increment input register

@ Multiplication - Implemented with sequence of add & shift
microoperations

@ Division - Implemented with sequence of subtract & shift
microoperations

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 31/39

http://www.ktuassist.in

Arithmetic Microoperation

Arithmetic Microoperation (cont.)

Register B

Parallel adder

(Fig. 5-1)
Sum ¢
7 Load N
2 " Register A
Increment | (Fig 7-19)

Ts

Figure: Implementation for addd and incrment microoperation

Sheena N (AP in CSE, CEMP) Module 5

May 1, 2017

32 /39

Logic Micooperation

Logic Micooperation

@ Specify binary operations for a string of bits stored in registers

o Consider each bit in the registers separately and treat as a binary
variable

@ Exclusive OR operation is symbolised by the statement
F—AeB
@ The + symbol has different meaning
Ti+T,: A<~ A+B,C+~DVF

The + between T; and T, is an OR opeartion between 2 timing
variables of a control function
The + between A & B specifies an add microoperation

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 33 /39

Logic Micooperation

Logic Micooperation (cont.)

Table: Logic & shift microoperation

Symbolic
designation

Description

Ae—A

Fe AN B
F—ANB
F—A@B
A «shl A
A «—shr A

Complement all bits of register A
Logic OR microoperation

Logic AND microoperation

Logic exclusive-OR microoperation
Shift-left register A

Shift-right register 4

Sheena N (AP in CSE, CEMP)

Module 5 May 1, 2017

34 /39

http://www.ktuassist.in

Shift Micooperation

Transfers binary information between registers in serial computers
Used in parallel computers for arithmetic, logic and control operations
Registers are shifted to the left or to the right

No conventioal symbol for shift operation

Here adopt symbols shl or shr
shl - shift left
shr - shift right
Eg :-
A < shl A - 1-bit shift to the left of register A
B < shr B - 1-bit shift to the right of register B
While the bits are shifted extreme flip flops receive information from
the serial input

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 35 /39

Shift Micooperation (cont.)

@ Information transferred to extreme flip flop is not specified by shl or
shr symbols

@ Shift operation is accompanied with other microopeartion that
specifies the value of the serial input for the bit transfer into the
extreme fip flop

o Eg:-
A <« shl, A1 < A, - Circular shift that tranfers the leftmost bit from
A, into the rightmost flipflop Az
A < shr, A, < E - Shift right opration with the leftmost flip flop A,
receiving the value of the 1-bit register E

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 36 / 39

Conditional Control Statements

Conditional Control Statements

@ Specify a control condition by a conditional statement rather than a
boolean control function

@ Symbolised by if-then-else statement
P : If(condition) then [microoperation(s)] else [microoperation(s)]

mean that if control condition stated within the parentheses after the
word if is true, then microoperation enclosed within the parentheses
after the word then is executed otherwise the microoperation listed
within after the word else is executed

@ In any case the control function P must occur for anything to be done

o If else part of the statement is missing then nothing is executed if the
condition is not true

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 37 /39

http://www.ktuassist.in

Conditional Control Statements

Conditional Control Statements (cont.)

Eg:-
T, : If (C=0) then (F < 1) else (F < 0)

F is asssumed to be 1-bit register(flip flop) that can be set or cleared.
If register C is a 1-bit register the statement is equivalent to the
following statements

C'Ty:F+1

CTh,:F«+0
Same timing variable can occur in two separate control function. The

valu of Cis 0 or 1. So only one microoperation will be executed
during T depending on the value of C.

If C has more than 1 bit the condition C = 0 means that all bits of C
must be 0.

Register C has 4 bits C;, Gy, C3 and (4 the condition C=0 can be
expressed with boolean function

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017 38 /39

Conditional Control Statements

Conditional Control Statements (cont.)

X = C{CéCé Zl = (Cl + G+ G+ C4)/
variable x can be generated with a NOR gate.

@ Conditional control statements now equivalent to 2 statements
xTo: F«+1

xX'Tr:F<+0
variable x =1 if C=0butisequal to 0 if C#0

Sheena N (AP in CSE, CEMP) Module 5 May 1, 2017

39 / 39

ALU Design
A B D F C, H
01y o1 011 100 0 010

Cince v cplecting reot .
Since we are selecting register R3 both A and B and destination D can select the bit pattern

as 011 ALU will select OR operation by setting the code as 1000. Shift left operation can be
specified by selecting H pattern as 010.

The control word for each microoperation is derived from the function table of the
processor. The sequences of control words are stored in control memory. Based on the
scl::ugn variables system will perform the sequence of micro operations. The scheme of
roducing control signals based on the control word is known as micro programmed control.

5.2.5 Design of Accumulator

Some processors distinguish one register from others and it is known as accumulator
i \\'—
register. It is a multipurpose register capable of performing not only the add microopgration

l‘l)unan}_qt_h.cr,nucnogpsrllw The organization of a processor unit with an
accumulator register 1s shown below.

Input Data
Select B <nurce Processor registers
—_———
Or
Memory unit
A B
A A
ALU

Accumulator Register (A)

e , v
Output data

= Fig 5.16: Processor with an accumulator register

Thc ALU a jated with the register m constructed as a combinational circuit. In this
configuration, the accumulator register is csscnnaly a_b irectional shift register with

parallel load which is conncclcd to the ALU. There IS also a fccdback connection from the
output of accumulator register lo one of the inputs in ALU. Because of this feedback
connection, the accumulator register and is associated logic, when taken as one unit.

-

127

Scanned by CamScanner

e e e et e

w

ALU Degyg, N\ .\
N

constitute a scqucnual circuit. The block dmgran_t_gflh: accumulator that forms as sequentia)

S——— -
circuit is shown bclovs
-——v‘-..'

Repister A

»

Combinational |e Control vanables

circunlt

B
Data inputs

Fig 5.17: Block dingram of accumulator

The A register and associated combinational circuit constitute a sequentialgircuit. Here the
combinational circuit replaces ALU, but it cannot be separated from the “r.(.:gr,istcr. The
accumulator register is denoted by A or AC (A register and associated combinational
circuit). The external inputs to the accumulator are data inputs from B and the control
variables (which will specify the microoperation to be executed).

Accumulator can also perform data processing operations .Total of nine operations are
considered here for the design of accumulator circuit. These operations are described below

Control F with F with
variable C=0 * | Ca=l
Pl A€A+B Add
P2 A€D Clear
P3 A (-/A\ Complement '
P4 A€A B AND
PS A€AVB OR :
P6 AEADB Exclusive-OR
P7 A€shr A Shaft-right
P8 A€shIA | Shifile _
P9 A€A+] Increment]
Zbit | IGA=0uheniZ=1) | Check for zero

Table 5.9: List of microoperation for an accumulator

In all listed microoperations A is the source register. B register is used as the second source

register. The destination register is also accumulator register itself. The nine control
variables are considered as inputs 1o the sequential circuit. These variables are mutually
exclusive. That means, only onc. variable mus} be enabled when a clock pulsc occurs The
last entry in the wbleis a conditional control statement. It produces a binary 1 in the outpul

variable Z when the content of regisier A is 0.
128

'

.
N

o

Scanned by CamScann_.o..

‘Ah]ﬁvv‘.t \WH .o .

ALU Designr)

. “It ’
Design Procedure [;—1‘47 -

Acc al . .)
cumulator consists of n stages and n flip flops, numbered as A, A, As....An from righf™—

o lcfl..lt IS convenient to partition the accumulator into n similar stages, with each stag
COns:s'lmg of one flip flop denoted by Ai, and one data input denoted by B, and the
Cofnbmalional logic associated with the flip flop. Each stage A, is interconnected with
neighbouring stage A,., on its right and A,., on its left. The register will be designed using
JK type flip flops.) i

Each control variable P, initiates a microoperation. Here nine microoperations are there by
selecting control variables from P, to Ps. Accumulator is partitioned into n stages and each
stage is again partitioned into those circuits that are needed for each microoperation. In the
design procedure, we are designing various picces separately and combine to form a one
stage accumulator and then combine the stages to form a complete accumulator.

e AddBtoA(P))
Add microoperation is initiated when control variable P, is 1. To perform addition
operation, accumulator can use a parallel adder composed of full adders. The full adder
in each stage 1 will accept the input and (present state of A, and data input B,)) and a
previous carry bit C,. Sum bit is transferred to flip flop A, and output carries Ci+ 1S
transferred to the next stage as input carry of that stage.

The state table of a full adder, when considered as a sequential circuit is shown below.

Present Input Next ';I‘I:,?:P Output
State State

A, B, (o A JA, KA; | Cuwy
0 0 0 0 0 X 0

° 0 1 | ! X 0

° 1 0 1] X 0

0 1 I 0 . X :

1 o |o ' A o _|°

" 0 | 0 X | 1

1 | 0 0 X : :

, — , x Jo |1

Table 5.10: Excitation table for add microoperation

Columns of the table can be described as follows:

Present state- the value of flip flop Ai before the clock pulse

Next state- the value of flip flop Ai after the clock pulse (here, it will be determined
by sum produced with inputs A,, B, and C)) '

» C, - input carry

» Ci - output carry

» Flip flop inputs - shows the excitation input for the JK {lip flop.

.
.

.
y

129

Scanned by CamScann_.o..

ALL/ //l‘éi}"n

[Present Next J K
state State |
o | o | o] x
P—“(l ! !) —-—~\?~~~ J
e x| J
IR I .

Table S.11: List of microoperation for an accumulator

According to these values the above flip Nop inputs are sct. The flip flop input functions
and the Boolean functions for the output are simplified in the maps as shown in fig 5.19.

BC _ BC BC
A\ 00 01 1 10 AN 0 o 1 10 A N0 010
0 ! ! 0 x x x x 0]
! s J X X | x ! | | ! ! ! IJ
JA=BC, + B'C, KA=BC,'+B,C, C.,"AB,+AC, + BC,

Fig 5.18: Map simplification for Add Microoperation

The J input of flip-flop Ai, designated by JA, and the K input of flip flop A,, designated
by KA,, do not include the control variable pl. These_two equations shou!d affect the
flip flop only when_P, is enabled. Therefore, they should be ANDed with control
variable P'.'."l"f\?;iiu’;equation becomes,

.’A|=B|C|'Pl + Bu'CvPI
KA=B.C,P, + B,’CP,
Cl*l=AoBo + Aocl + BICI

Clear (P;)
Control vanable P: clears all flip flops in register A. To cause this transition in a JK flip

flop, we need only apply control variable P2 to the K input of the flip flop. The J input
will be assumed to be 0 if nothing is applied on it. The input functions can be written as:

JA=0
'KA.= P;

Complement(P;) ‘
To cause this transition in a JK flip flop we need to apply P; to both J and K inpults.

JA,"—' P]
KA.‘PJ

130

Scanned by CamScann_

- —

Y
£0%)

O

ALU Design
AND (P,)

This mic ion |
roo Init i
Operation is initiated with control variable Py

logic AND operation betw .This operation performs the

cen A, and B, and transfers the result 1o A,. The excitation

table for this operation is as shown below.

Present Neat Flip-fiop
State Input Susie Inputs E, B,
I o —
1
A B, A, JA, KA, X X |
0 0 0 0 X {
A, X X A.{ !
0 1 0 0 X
! 0 0 X I JA, =0 KA =B’
1 | | X 0

Fig 5.19: Excitation table for AND microoperations

The next state of A, will be 1 only when the present state of A, and data input B, is Is.
The flip flop input functions can be simplified with the maps and the equations can be
written as:

JA=0
KA=B;

By including the control variable p4, the equation can be rewritten as:

)AF 0
KA=B,'Ps4
OR (Ps)

Control variable Ps initiates the logic OR operation between A, and B,. The result 1S
transferred to A,. The excitation table for this operation is as shown below.

tio-
Veesend Input i I‘il:np-nl:p . "
State P State P W et T A
A B, A, JA, KA, ! & X
0 0 0 0 X A, { x| x A, {
o .] 1 | X
JA,= B, KA, -0
] 0] X 0 ;
) l | 0

Fig 5.20: Fxcitation table for OR microoperations

A
o

Scanned by CamScann_.o..

ALU Design

e that the J input be enabled when B=1.

T e dictat .
The simplified equationt ™ e mep f Ai are the samé. When B=1, the J input

When B,=0, the present state and next state 0

i enabled and the next state of A, becomes |. Input functions for the OR
nncrooperallon are:
JA=BP;s
KA;=0

Exclusive-OR (P)

Control variable P initiates the logic Exclusive-OR operation between A, and B,. The
result is transferred to A,. The excitation table and map simplification 1s as shown
below.

Present ' Next Flip-Nop \ B
State nput Shite Inputs B, .
S . —

A B, A, JA, KA, | X X
0 0 0 0 X .
0 | | | x | Al { X X A, { !
| 0 | X 0 JA,- B, KA, =B,
| 1 0 |

Fig 5.21: Excitation table for Exclusive-OR microoperations

The flip flop input functions are written as:
JA=B,Ps
" KA=B/P¢

Shift-right (P7)

Control variable P initiates the shift operation of A; register one bit to the right. That is,
the value of flip flop A.., is transferred to flip flop A,. The flip flop input functions can
be written as:

JA= APy
KA.= A!|4|P7

Shift-left (Ps)
Control variable Pg initiates the shift operation of A, register one bit to the left. That is,

the value of flip flop A, is transferred to flip flop A,. The flip flop input functions can
be written as:

JA|= An-lpl

KA|= A'|~|P“ |

N
o

Scanned by CamScann_.o..

AL Design
Increment (Py)

These L{ eraly o »
alio D . ;
P ons icrement the content of A register by one. The register behaves likes

a synchror inarv —— ;
} SIS binary counter with Pq enabling the count. A 3 bit synchronous counter is
shown in the following figure.

- e -
Ll R e S

| !
| |

\ Ay l Ay Al

| }

i Q : Q 0

] .

'l T . j\ } JA J

\ ¢ —+ 4 ¢ cp
bl ! ‘ et

', |

\ |

1]

' :

4
1 4 \ - —e—0
1 I E; ‘ E, ¢ E=P,
}

Fig 5.22: 3-bit synchronous binary counter

From the figure it can see that each stage is complemented when an input carry E=1.
Each stage is generating an output carry Ei, that is fed to the next stage on its left. The
first stage is an exception, since it is complemented with the count-enable Po. The
Boolean function for a typical stage can be written as:

JA=E,
KA=E,
E«=EA; i=1,2,....,n
E=Py

Input carry to the first stage of counter is E,. 1t must be equal to the control variable p9

which enables the count. The input carry E; is used to complement flip flop A,; The
input carry is ANDed with A, lo generate a carry for the next stage.

Check for Zero (Z)

Variable Z is an output from.the accumulator. This variable can be used to indicate a
zero content in the A register. All the flip flops in the accumulator is cleared Z variable
will be set to 1. When a flip flop is cleared, its complement output Q" is equal to 1.

The following figure shows the first three stages of the accumulator that checks for zero
content. Each stage generates a variable Z,«) by ANDing the complement output of A, 10

an input variable Z,. In this way. a chain of AND gates through atl stages will indicate if
all flips are cleared.

A

@

https://play.google.com/store/apps/details?id=ktuassist.in

ALU Design

- ehipm . e ma e e o= e S

Z,

Zy

Z=1

N |

A

Fig 5.23: Chain of AND gates for checking the zero content of a register

The Boolean function for a typical stage can be expressed as:

Z =LA i=1,2,...,n
Z|=l
Zon=2

Variable Z becomes 1 it the output signal from the last stage Zosy is 1.

One stage of Accumulator

In the earlier sections we have derived the logic circuits for each individual microoperation
that can be performed by the Accumulator. Now, we can combine them.to all to form one
stage of the Accumulator circuit. Combining all the input functions for the J and K inputs
flip flop A, produces a composite set of input Boolean functions for-a typical stage.

]AFB,C‘,’P[+ B.,CiP|+P3+BiPS+ BiP6+Ai+IP7+AI-IP8:"EI a -
KA=BC/P, + B,’C,P|+P3+P3+B|,P4+ BiPet+ A’ Pt A’ Pt E,

Each stage in the accumulator must produce the carry for the next stage.
Cii= ABi+ ACi+B,C,

E|+ 1 = E.A|
Zpr{ =Z|A 1 !

The logic diagram for one typical stage of the Accumulator is shown below:

Scanned by CamScann_ 0

ALU Design

&
J L

=L
-0

L_ . P, Add

cp

P, Clear
P, Complement

P, AND

L)

Ps OR

P, Exclusive Or

A

Anl
Py Shifi-night

4&

An-l
P. Shifi-lefi

Najalala

E. Increment

Fig 5.24: One typical stage of the accumulator

Each accumulator stage has eight control inputs.from P, to Pg that initiates one of eight
possible microoperations. Control variable Po is applied only to the first stage to enable the
increment operation through input E,. :

thaila

ey 2
poet e o &

R S e N7
o)

o) () D o)
oldllleu Uy Ldlllotdliit_ o

https://play.google.com/store/apps/details?id=ktuassist.in

ALU Designy
omes from the flip

ut B;, input carry Ci,Ar €
the left, Ei(carry

e flip flop one position 10
rm chain of zero detection).

There are six other inputs in the circuit. Data inp
flop one position to the right, Ay comes from th
input for the increment operation),and Z,(used to fo

There are four outputs to this circuit.

A - output of the flip flop

C - carry for the next stage

Esi - increment carry for the next stage

Ly = carry for the next stage for zero detection.

Cormplzte Accumulator :

We have covered the design of one stage of Accumulator. For a complete accumulator there
will be n stages like this. The inputs and outputs of each stage can be conneéted in cascade
to form a complete accumulator. Here we are discussing the design of a 4 bit accumulator.
The following diagram shows the design.

B4 B3 B2 Bi
4 3 2]
B4 ¢ B3 B2 Bi <J
72— Z5 Z+ I yA Zy |e YAl 72 I« 22 Zl |e—
Output cary | €5 Cs |« Ci C3 e G C | C2 C1 |e— Input carry
e A“! Al e -A3 A? |« A2 Al |e Al Ao 4— Serial
Increment E E4 [e B+ B[4 B3 E2 [e E2 El |e— i
carry AS A¢ e A3 Al |e i
r'y F 3 & A 3 3 r 3 4

Senal Input
P1to Px
cp

Fig 5.25: 4-bit accumulator constructed with four stages

The number on top of cach block represents the bit position. All blocks receive 8 control
variables pl to p8 and the clock pulses from CP. The other six inputs and four outputs are

same as with the typical stage. |
ariables in cascade. with the first

The zcro. detect chain is obtained by connecting the z v
zero detect variable i

block receiving a binary constant 1. The last stage producces the

v
/ -

https://play.google.com/store/apps/details?id=ktuassist.in

X

AL Design

Total number of terminals in the 4 bit
outputs. Incorporating two m
within one IC pac

accumulator 1s 25, including terminals for the A
| Ircuit ¢ nclosed
ore terminals for power supply, the circuit can be en >
ns, ntro

Kage having 27 or 28 ping, The number of tenminals for the co

i | Inser ' 1 cases, 1C pin
vartable can be reduced from 9 10 4 if a decoder is inserted in the 1C, In sucl C

| ' ' '])y 1 6 microoperations
count 1s also reduced 1o 22 and the accumulator can be extended tc

; ek de i L Al ions
without adding external pins (That is, with 4 bits we can identify 16 operations)

Nl
g

f

Scanned by CamScann_.o..

6.1 (k)ntroll,ouigj)csipn
Control unit is the nerve centre of
i1s the generation of timing
methods of control unit de

dcomputer system. The main responsibility of control unit

and control signals. In this section, we are discussing the different
sign.

0.1.1 Control Organization

The control unit is the cireuitry that controls the flow of information through the processor,
.md. coordinates the activities of the other units within it. In a way, it i5 the "brain within the
brain”, as it controls what happens inside the processor, which in turn controls the rest of the
PC. Control units control the flow of information with the help of control signals.

Functions of Control Unit

The control unit dirccts the entire computer system to carry out stored program instructions.
The control unit must communicate with both the arithmetic logic unit (ALU) and main
memory. The control unit instructs the arithmetic logic unit that which logical or arithmetic
operation is to be performed .The control unit co-ordinates the activities of the all other
units as well as all peripherals and auxiliary storage devices linked to the computer.

Design of Control Unit

To execute an instruction, the control unit of the CPU must generate the required control
signal in the proper sequence. As for example, during the fetch phase, CPU has to generate
PCou signal along with other required signal in the first clock pulse. In the second clock
pulse CPU has to generate PCj, signal along with other required signals. So, during fetch

phase, the proper sequence for generating the signal to retrieve from and store 1o PC is PCou
and PC,,.

To generate the control signal in proper sequence, a wide variety of techniques exists. Most
of these techniques, however, fall into one of the two categories.

-I"l. Hardwired Control

" 2. Micro programmed Control
Hardwired control units are constructed using digital circuits and once formed it cannot be
changed. A micro programmed control unit itself decodes and execute instructions by means
of executing micro programs. -

6.1.2 Design of Hardwired Control
In this hardwired control techniques, the control signals are generated by means of
hardwired circuit. The main objective of control unit is to generate the control signal
proper sequence.

Consider the sequence of control signal required to execute the add instruction. It is obvious
that seven non-overlapping time slots are required for proper execution of the instruction
represented by this sequence. Each time slot must be at least long enough for the function

140

A
o

Scanned by CamScann_.o..

Control Unit Design

unit is implemented

specified in the corresponding step to be completed. Since , the control ImF :
o which it requires

by hardwire device and every device is having a propagation delay , due't _)
some time to get the stable output signal at the output port after giving the input signal. So,
to find out the time slot is a complicated task. For the moment, for simplicity, let us assume
that all slots are equal in diameter. Therefore the required controller may be implemented
based upon the use of a counter driven by clock. Each state, or count, of this counter
corresponds to one of the steps of the control sequence of the instructions of the CPU.
In the previous discussion (Refer chapter 2, section 2.1.3), we have mentioned control
sequence for execution of two instructions only (one is for add and other one is for
branching). Like that we need to design the control sequence of all the instructions. By
looking into the design of the CPU, we may say that there are various instruction for add
operation. As for example, :
Add (R3), RI Add the contents of memory location specified by R3 to the
contents of register R1.
R1 & R1+[R3)
Add R2,RI1 Add the contents of register R2 to the contents of regnster R1
Rl € R1+R2
The control sequence for execution of these two adds instructions are different of course, the -
fetch phase of all the instruction remain same. It is clear that control signals depend on the
instruction, i.e. the contents of the instruction register. It is also observed that execution of
some of the instructions depend on the contents of condition code or status flag register,
where the control sequence depends in conditional branch mstmcnon Hence the required
control signals are uniquely determined by the following information:
e Contents of the control counter.
» Contents of the instruction register.
e Contents of the condition code and other status flags.

The status flags represent the various state of the CPU and various control lines connected to -
it, such as MFC status signal. The structure of control unit-can be represented in a simplified
view by putting it in block diagram. The detailed hardware involved may be explored step

by step. The simplified view of the control unit is given in the figure 6.1.

il Control step
Clock >
counter
LR / A
> < External
g - mputs
>
IR Decoder/
K Encoder - :
B Condition
- : codes
>

Control signals

Fig 6.1: Control Unit Organization

http://www.ktuassist.in

Control Umit Design

The decoder/encoder is ci e ,

control b.lock Is simply a combinational circuit that generates the required
OP‘PU‘S depending on the state of all its input. The decoder part of decoder/encoder

p:.irt‘prowdes a separate signal line for each control step, or time slot in the control sequence.

Similarly, the output of the instruction decoder consists of a separate line for each machine

instruction loaded in the IR. one of the output lines INS, to INS, be set to | and all other
lines are set to 0.

Clock CLK Control step Reset
counter N
Yy v
Sten Decnder
| R I
TI T'.! ¢4 e Tn
INSI Y ¥
R INS2 < External
1 Instruction Decodsr)) inputs
R . Decoder . Encoder %
) 3 Condition
INS .
.. NS codes
1
Run End
__V—_J

Control signals

Fig 6.2: Control Unit Organization

All input signals to the encoder block should be combined to generate the individual control
signals. Control step counter keeps tracks of the count of control steps. Each state or count
of this control step corresponds to one control step. The step decoder provides a separate
signal line for each step or time slot in the control sequence. The output of the instruction
decoder consists of a separate signal line for each instruction. For any instruction loaded in
the IR, one of the output lines NS, through INS, is set to I and all other lines are set to zero.
The encoder circuit combines all of these inputs and generates the control signals Y., Zou

etc.

It is required to generate many control signals by the control unit. These are basically
coming out from the encoder circuit of the control signal generator. The control signals are
lie PCyn , PCout Zin » Zow . MAR, , add . End etc. In the previous discussions (chapter 2), we
have mentioned the control sequence of the instruction, “Add (R3), RI", and “Control
sequence for an unconditional branch instruction (BR)". Consider those CPU instructions.

By looking into the above instructions. we can wrile the logic function for Z,, as:

Zin = T' +T6-P\DD + T,‘.BR Posseravesesvene

This means, control signal Z,, have to be gencrated for time cycles Tlfor all instructions. m ;
time cvele T6 for add instruction and in time cycle T, of BR instruction and so on. I

L1 NP

Scanned by CamScann_.o..

Control Unit Design

Sunilarly, the Boolean logie tuncuon for add signal 1s
add = T+ TeADDE TUBR + i aiinn

These logic functions can be implemented by a two level combinational circuit of AND and

OR gates. Simlarly, the Fod control signal is generated by the logic function:
End = Ty, ADD + TeBR + (TeN AT N)LBRN + ..o,

This End signal indicates the End of the execution of an instruction, so this End signal can
be used to start a new instruction fetch cycle by resetting the control step counter to its

starting value. The circuit diagram (Partial) for generating Z,,, and End signal is shown in the
diagram. Branch Add

T, i — T

T,

Z.
Fig 6.3: Generation of Z,, signal for the processor

Branch<Q

Add N N Brnch

T;) T‘

¥

Cnd

Fig 6.4: Generation of the End control signal

The signal ADD, BR, BRN etc are coming from instruction decoder circuits which depends

on the contents of IR, The signal 1,1, , 1. elc are coming out from step decoder depends on

control step counter. The signal N (Negative) is coming from condition code register When
wait for MFC (WMFC) signal is gencrated. then CPU does not do any works and at wans tor

Scanned by CamScann_

%W
%

Nl
S

f

O

Controfl Unir l s

an MFC signal fron :
- ST ' n / e ,
he ness _C(im | remory unit, In this case, the desired ellect is to delay the initiation of
At Control step ' . ' e : . ' ‘
iResERoEated b | :'l"-lml the MEC signal is received from the main memory. This can be
o " .
Y mhbiting the advancement of the control step counter for the required

nod. Let us ass ; ,
[\):h tus assume that the control step counter 1s controlled by a signal called RUN.
en set to 1, RUN causes the counte

rto be incremented by one at the end of every clock
cycle. When RUN equal to 7¢ T '
jual to zero, the counter stops counting This is needed whenever the

\\l"MP(- signal 1s assued, 1o cause the processor o wait for the reply trom the memory. End
signal starts a new instruction fetch cycle by resetting the control step counter to 1ts starting
value. The control hardwire we have discussed now can be viewed as a state machine that
changes from one state to another in every clock cycle, depending on the contents of the
instruction register, condition codes and external inputs. The output of the state machines are
the control signals. The sequence of operations carried out by this machine is determined by
the wiring of the logic elements; hence it is named as “Hardwired unit™.
Advantages

1. They Operates at high speed.
Disadvantages

1. Have little flexibility.

2. Complexity of the instruction set it can implement is limited.

A complete Processor

A complete processor can be designed using the following structure as shown in figure
6.5 This structure has an instruction unit that fetches instruction from an instruction cache
or from the main memory. To deal with integer and floating point data it has scparate
processing units. A data cache is inserted between the main memory and integer and floating
point units. The processor is connected to the system bus and hence to the rest of the
computer by means of a bus interface. A processor may include several units of integer and
floating point units so that the rate of instruction execution will be increased.

Instruction Integer Floating-
Unit Unit point Unn

T j
I

Instruction Daa
cache Cache
Bus intertace
Q Processor

<:_U = 3 —>

System bux

Mamn Inpuy’
NMemon Output

Fip 6.8: Block diagram of a complete Processor

144

A
o

Scanned by CamScann_.o..

http://www.ktuassist.in

