
Input/Output: files, stream classes, reading console input. Threads: thread model, use of
Thread class and Runnable interface, thread synchronization, multithreading.

Streams
Java programs perform I/O through streams. A stream is an abstraction that either produces
or consumes information. A stream is linked to a physical device by the Java I/O system. All
streams behave in the same manner, even if the actual physical devices to which they are
linked differ. Thus, the same I/O classes and methods can be applied to any type of device.
This means that an input stream can abstract many different kinds of input: from a disk file,
a keyboard, or a network socket. Likewise, an output stream may refer to the console, a disk
file, or a network connection.

Byte Streams and Character Streams

Byte streams provide a convenient means for handling input and output of bytes. Byte
streams are used, for example, when reading or writing binary data.

Character streams provide a convenient means for handling
input and output of characters. They use Unicode and, therefore, can be internationalized.

The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top are two abstract classes:
InputStream and OutputStream.

to use the stream classes, you must import java.io.

The Character Stream Classes

Character streams are defined by using two class hierarchies. At the top are two abstract
classes: Reader and Writer.

The Predefined Streams

all Java programs automatically import the java.lang package. This package
defines a class called System, which encapsulates several aspects of the run-time
environment.

System also contains three predefined stream variables: in, out, and err. These fields are
declared as public, static, and final within System. This means that they can be used by any
other part of your program and without reference to a specific System object.
System.out refers to the standard output stream. By default, this is the console.

System.in refers to standard input, which is the keyboard by default.
System.err refers to the standard error stream, which also is the console by default.

System.in is an object of type InputStream; System.out and System.err are objects
of type PrintStream.
Reading Console Input
only way to perform console input was to use a byte stream.

A commonly used constructor is shown here:

BufferedReader(Reader inputReader)
inputReader is the stream that is linked to the instance of BufferedReader that is being
created. Reader is an abstract class. One of its concrete subclasses is InputStreamReader,
which converts bytes to characters.
To obtain an InputStreamReader object that is linked to System.in, use the following
constructor:
 InputStreamReader(InputStream inputStream)

Putting it all together, the following line of code creates a BufferedReader that is connected
to the keyboard:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

After this statement executes, br is a character-based stream that is linked to the
console through System.in.

Reading Characters

To read a character from a BufferedReader, use read(). The version of read() that we will
be using is
 int read() throws IOException

Each time that read() is called, it reads a character from the input stream and returns it as
an integer value. It returns –1 when the end of the stream is encountered.

// Use a BufferedReader to read characters from the console.
import java.io.*;
class BRRead {
public static void main(String args[]) throws IOException
{
char c;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter characters, 'q' to quit.");
// read characters
do {
c = (char) br.read();
System.out.println(c);
} while(c != 'q');
}
}

Here is a sample run:
Enter characters, 'q' to quit.
123abcq
1
2
3
a
b
c
q

Reading Strings

To read a string from the keyboard, use the version of readLine() that is a member of the
BufferedReader class. Its general form is shown here:

String readLine() throws IOException

// Read a string from console using a BufferedReader.
import java.io.*;
class BRReadLines {
public static void main(String args[]) throws IOException
{
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String str;
System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
do {
str = br.readLine();
System.out.println(str);
} while(!str.equals("stop"));
}
}
// A tiny editor.
import java.io.*;
class TinyEdit {
public static void main(String args[]) throws IOException
{
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
String str[] = new String[100];
System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
for(int i=0; i<100; i++) {
str[i] = br.readLine();
if(str[i].equals("stop")) break;
}
System.out.println("\nHere is your file:");

// display the lines
for(int i=0; i<100; i++) {
if(str[i].equals("stop")) break;
System.out.println(str[i]);
}
}
}
Here is a sample run:
Enter lines of text.
Enter 'stop' to quit.
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.

stop
Here is your file:
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.

Writing Console Output

Console output is most easily accomplished with print() and println().

The simplest
form of write() defined by PrintStream is shown here:
 void write(int byteval)

byteval is declared as an integer,

// Demonstrate System.out.write().
class WriteDemo {
public static void main(String args[]) {
int b;
b = 'A';
System.out.write(b);
System.out.write('\n');
}
}

THREAD
Thread’s State

The Main Thread
When a Java program starts up, one thread begins running immediately. This is usually called
the main thread of your program, because it is the one that is executed when your program
begins. The main thread is important for two reasons:
 • It is the thread from which other “child” threads will be spawned.
• Often, it must be the last thread to finish execution because it performs various shutdown
actions.
 general form is shown here:

static Thread currentThread()
Creating a Thread

Java defines two ways in which this can be accomplished:
• You can implement the Runnable interface.

 • You can extend the Thread class, itself.
(I)Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable
interface.To implement Runnable, a class need only implement a single method called run(),
which is declared like this:

public void run()
Inside run(), you will define the code that constitutes the new thread.
After you create a class that implements Runnable, you will instantiate an object of type
Thread from within that class. Thread defines several constructors. The one that we will use
is shown here:

Thread(Runnable threadOb, String threadName)
After the new thread is created, it will not start running until you call its start() method, which
is declared within Thread. In essence, start() executes a call to run(). The start() method is
shown here:

void start()
Here is an example that creates a new thread and starts it running:

Inside NewThread’s constructor, a new Thread object is created by the following statement:

t = new Thread(this, "Demo Thread");
OUTPUT

(II)Extending Thread
The second way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which
is the entry point for the new thread. It must also call start() to begin execution of the new
thread.

Notice the call to super() inside NewThread. This invokes the following form of the Thread
constructor:

 public Thread(String threadName)

OUTPUT

Creating Multiple Threads
 your program can spawn as many threads as it needs.

OUTPUT

Synchronization
When two or more threads need access to a shared resource, they need some way to ensure
that the resource will be used by only one thread at a time. The process by which this is
achieved is called synchronization.
Key to synchronization is the concept of the monitor. A monitor is an object that is used as a
mutually exclusive lock. Only one thread can own a monitor at a given time. When a thread
acquires a lock, it is said to have entered the monitor. All other threads attempting to enter the
locked monitor will be suspended until the first thread exits the monitor. These other threads
are said to be waiting for the monitor. A thread that owns a monitor can reenter the same
monitor if it so desires.

You can synchronize your code in either of two ways.
1.Using Synchronized Methods
 To enter an object’s monitor, just call a method that has been modified with the
synchronized keyword.
To fix the preceding program, you must serialize access to call(). That is, you must restrict its
access to only one thread at a time. To do this, you simply need to precede call()’s definition
with the keyword synchronized, as shown here:

This prevents other threads from entering call() while another thread is using it. After
synchronized has been added to call(), the output of the program is as follows:

2.The synchronized Statement
This is the general form of the synchronized statement:

Here, object is a reference to the object being synchronized. A synchronized block ensures
that a call to a method that is a member of object occurs only after the current thread has
successfully entered object’s monitor.
Here is an alternative version of the preceding example, using a synchronized block within
the run() method:

OUTPUT

 Multithreading
The key to utilizing Java’s multithreading features effectively is to think concurrently rather
than serially. For example, when you have two subsystems within a program that can execute
concurrently, make them individual threads. If you create too many threads, you can actually
degrade the performance of your program rather than enhance it. Remember, some
overhead is associated with context switching. If you create too many threads, more CPU
time will be spent changing contexts than executing your program!

