String Handling

The String Constructors

1.To create an empty String, call the default constructor.
String s = new String();

will create an instance of String with no characters in it.

2.To create a String initialized by an array of characters, use the constructor shown here:
String(char chars[])

char chars[] ={'a", 'b", 'c' };

String s = new String(chars);

This constructor initializes s with the string "abc".

3.You can specify a subrange of a character array as an initializer using the following
constructor:

String(char chars[], int startindex, int numChars)
Here, startindex specifies the index at which the subrange begins, and numChars specifies
the number of characters to use.
char chars[] ={'a", 'b", 'c’, 'd’, 'e', 'f' };
String s = new String(chars, 2, 3);

This initializes s with the characters cde.

4.You can construct a String object that contains the same character sequence as another
String object using this constructor:

String(String strObj)
Here, strObj is a String object.

String from anocther.

id main(String args
J "a' G a
new Stringlc);
new String(sl
System.out.println(sl};
System.out.println(s2);

The output from this program is as follows:

Jawva
Jawva

5. the String class provides constructors that initialize a string when given a byte array. Two
forms are shown here:
String(byte asciiChars][])
String(byte asciiChars][], int startindex, int numChars)

f Construct string from subset of char array.
class SubStringCons |

public static veid main(String args[]) |
byte a=zcii[] = {65, &6, &7, 68, 69, TO };
String

1 = new String(ascii):

=
System.out.println(sl);

String ! = new String(ascii, 2, 3);

=
System.out.println(s2);

This program generates the following outpui:

ABCDEF
CDE

String Length

The length of a string is the number of characters that it contains. To obtain this value, call the
length() method, shown here:
int length()

char chars[] = { 'a', 'b', "c" }:
String s = new String{chars}:
System.out.printlnis.length(});

Special String Operations

1.String Literals
For each string literal in your program, Java automatically constructs a String object. Thus,
you can use a string literal to initialize a String object.

char chars[] = { "a", "B", '"e'" };
5tring sl = new String{chars);
String s2 = "abc"; /S use string literal

Because a String object is created for every string literal, you can use a string literal any place
you can use a String object. For example, you can call methods directly on a quoted string as
if it were an object reference, as the following statement shows. It calls the length() method
on the string "abc".

System.out.println(™abc".length{)}:

2.String Concatenation

The + operator, concatenates two strings,

S5tring age = "3";
S5tring 5 = "He is ™ + age +
System.out.println{s);

" years old.";

This displays the string "He is 9 years old.”
3.String Concatenation with Other Data Types
You can concatenate strings with other types of data.

int age = 9;

String years old.";

Output
He is 9 years old.

Character Extraction
1.charAt()
To extract a single character from a String, you can refer directly to an individual character via
the charAt() method. It has this general form:
char charAt(int where)

assigns the value b to ch.

2.getChars()
If you need to extract more than one character at a time, you can use the getChars() method.
It has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)
Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. Thus, the substring
contains the characters from sourceStart through sourceEnd-1. The array that will receive the
characters is specified by target. The index within target at which the substring will be copied
is passed in targetStart.

tChars({start, end, buf, 0);

8

RS

tem.out.println{buf};

o

Here is the output of this program:

dama
demo

3.getBytes()

getBytes(), and it uses the default character-to-byte conversions provided by the platform.
Here is its simplest form:

byte[] getBytes()
4.toCharArray()
If you want to convert all the characters in a String object into a character array, the easiest
way is to call toCharArray(). It returns an array of characters for the entire string. It has this
general form:

char[] toCharArray()

String Comparison
1.equals()

To compare two strings for equality, use equals(). It has this general form:
boolean equals(Object str)
2.equalsignoreCase()
To perform a comparison that ignores case differences, call equalsignoreCase().
boolean equalsignoreCase(String str)

{ Demonstrate eguals() and egualsIgnoreCase().
i

bl vold main(String args[])
String =21 = "Hello"™;

String =2 = "Hello";

String 53 = "Good-bye":

tring s4 = "HELLO"™;

yetem.out.println{sl

S
e
w
f
m
H
()
=
ot

s1
.println(sl
51

L
L
m
i
i
=]
0
=
rt
his)
H
I
i
rt
=
-
n

System.out.println(sl "=k

lzIgnoreCase (s4));

The output from the program is shown here:

Hello equals Hello =»> true
Hello equals Good-bye -> false
Hello equals HELLO -> falae

Hello egqualsIgnoreCase HELLO -> true

3.regionMatches()
The regionMatches() method compares a specific region inside a string with another specific
region in another string.
e boolean regionMatches(int startindex, String str2, int str2Startindex, int
numChars)
e boolean regionMatches(boolean ignoreCase, int startindex, String str2, int
str2Startindex, int numChars)

4. startsWith()

The startsWith() method determines whether a given String begins with a specified string.
e boolean startsWith(String str)

"Foobar".startsWith("Foo") returns true.
e Dboolean startsWith(String str, int startindex)

startindex specifies the index into the invoking string at which point the search will begin.

"Foobar".startsWith("bar", 3) returns true.
5. endsWith()

endsWith() determines whether the String in question ends with a specified string.
boolean endsWith(String str)

"Foobar".endsWith("bar") returns true.

equals() Versus ==

the equals() method compares the characters inside a String object. The == operator

compares two object references to see whether they refer to the same instance.

/ eguals() wvs ==
class EqualsHotEgualTo |
vold main{Strine
"Hello™;

Wy
]
H

= new Stringi{sl);

s
1
I
T
i
=]
]
c
=
u)
H
-
=]
t
[
a
I
—
P
m
—
1
e
i
ka
|
1
W
+

{#r]

)

i

T

m

-]

)

F

"t

m

H

F

a

rt

[

1

n

—

M
8

=
11}

ot

[T |

= m W
Ba

b

in =

X

i

1

W

i

m

-

]

n

m

I

The variable s1 refers to the String instance created by "Hello". The object referred to
by s2 is created with s1 as an initializer. Thus, the contents of the two String objects
are identical, but they are distinct objects. This means that s1 and s2 do not refer to
the same objects and are, therefore, not ==, as is shown here by the output of the
preceding example:

output

Hello equals Hello -> true

Hello == Hello -> false

6.compareTo()
General form:
int compareTo(String str)
Here, str is the String being compared with the invoking String.

Value Meaning

Less than zero The invoking string 15 less than s
Greater than zero The invoking string is greater than sir
Zero The two strings are equal.

'/ A bubble sort for Strings.

class SortString |

static String arr[] = |
"Mow™, "is", "the", "time", "for", "all", "good”, "men",
n"eo® Yoome™. "to™. "tha™. "aid®. "of". "their®. "country™
L) [e LR ol r r [-i Bt — o ~ ¥

! F

public static woid main(Strine

i
i
I
- L]
¢ W

for(int j =

for{int 1

] LT
if{arr[i] .compareTo{arr[jl} < 0) |
String t = arr[j]:
arr[j] = arr[i]:
arr[i] = t:

Syatem.out.printlniarc([j]}:
4 | o L 4

The output of this program is the list of words:

If you want to ignore case differences when comparing two strings, use
compareTolgnoreCase(), as shown here:
int compareTolgnoreCase(String str)

Searching Strings

1.indexOf()
Searches for the first occurrence of a character or substring.
int indexOf(char ch)
To search for the first occurrence of a substring
int indexOf(String str)

You can specify a starting point for the search using these forms:

int indexOf(char ch, int startindex)

int indexOf(String str, int startindex)
startindex specifies the index at which point the search begins. For indexOf(), the search
runs from startindex to the end of the string.

2.lastIndexOf()
Searches for the last occurrence of a character or substring.
To search for the last occurrence of a character, use
int lastindexOf(char ch)
To search for the last occurrence of a substring, use
int lastindexOf(String str)
You can specify a starting point for the search using these forms:
int indexOf(String str, int startindex)
int lastindexOf(String str, int startindex)
For lastindexOf(), the search runs from startindex to zero.

{ Demonstrate indexOf() and lastIndexO£().

class indexOfDemo |

public static woid main(String args[])
Etring 58 = "How is the time for all good men " +
"to come to the aid of their countr m

System.out.println(s):

System.ocut.println(™indexdE(t) = ™ +
g.indexOE("t"}]);

Eystem.out.println(™lastIndex0f(t) = " +
s.lastIndexOE("t"))

Eystem.out.println{™index0f (the) = +
g.indexQf ("tha"))

System.out.println(™lastIndex0f (the) = +
!

s.lastIndex0f ("the")):
System.out.println(™index0f(t, 10) = " +
s.indexQf('t", 10});:
System.out.println(™lastIndexd 6d) =" +
g.lastIndexOf ("t", 6&0)};:
Eystem.ocut.println(™index0f (the, 10) = " +
g.index0f ("the™, 10)}):
System.out.println(™lastIndex0f (the, 60) "+

5.lastIndex0f ("tha",

Here is the output of this program:

Mow is the time for all good men to come to the aid of their country.
index0f (t) = 7

lastIndexOf({t) = &5

index0f (the) = 7

lastIndexOf ({the) = 55

index0f (t, 10) = 11

lastIndexOf({t, &0) = 55

index0f {(the, 10) = 44

lastIndexOf (the, &0) = 55

Modifying a String

1.substring()
String substring(int startindex)
startindex specifies the index at which the substring will begin

String substring(int startindex, int endindex)
startindex specifies the beginning index, and endIndex specifies the stopping point. The
string returned contains all the characters from the beginning index, up to, but not including,
the ending index.

f/ Substring replacement.
class StringReplace |

public static woid main(S5tring args[]} {
String org = "This 13 a test. This 1s, too.";
String search = "ig";
String sub = "was";
String result = "";
int 1;
do | /S replace all matching substrings

System.out.println{org):;
i = org.index0f (search);

iE{1. l=:=1}) {
result = org.substring(0, i};
result = result + sub;
result = result + org.substring{i + search.lengthi))}:
org = result;
} while(i != =1);

The output from this program is shown here:

This is a test. This is, too.
Thwas is a test. This is, too.

Thwas was a test. This is, too.
Thwas was a test. Thwas is, too.
Thwas was a test. Thwas was, too.

2.concat()
String concat(String str)
concat() performs the same function as +.
String s1 = "one";
String s2 = s1.concat("two");
puts the string "onetwo" into s2.
It generates the same result as the following sequence:

String s1 = "one";
String s2 = s1 + "two";

3.replace()
String replace(char original, char replacement)

, original specifies the character to be replaced by the character specified by replacement.
String s = "Hello".replace('l', 'w');

puts the string "Hewwo" into s.
String replace(CharSequence original, CharSequence replacement)
replaces one character sequence with another.

4.trim()

returns a copy of the invoking string from which any leading and trailing whitespace has been
removed. It has this general form:
String trim()

Here is an example:

String s = " Hello World ".trim():
This puts the string "Hello World" into s.

Changing the Case of Characters Within a String
1. toLowerCase()
converts all the characters in a string from uppercase to lowercase.

String toLowerCase()

2. toUpperCase()

converts all the characters in a string from lowercase to uppercase.
String toUpperCase()

/ Demonstrate tolpperCase() and tolowerCase ().

class ChangeCasze |

public static wold main(String args[])

String s = rhig is a test.";
System.out.println{™0riginal: ™ + =)
String upper = s.tolUpper

String lower = s.toLower

System.out.println{"Uppercase: " + upper);

.out.println{"Lowercase: " + lower);

Original: This is a test
Uppercase: THIS IS5 A TES
Lowercase: this is a test

Event Handling

The Delegation Event Model

Events

Defines standard and consistent mechanisms to generate and process events.

Its concept is quite simple: a source generates an event and sends it to one or more
listeners. In this scheme, the listener simply waits until it receives an event.

Once an event is received, the listener processes the event and then returns.

The advantage of this design is that the application logic that processes events is
cleanly separated from the user interface logic that generates those events.

A user interface element is able to “delegate” the processing of an event to a
separate piece of code.

In the delegation event model, listeners must register with a source in order to receive
an event notification.

This provides an important benefit: notifications are sent only to listeners that want to
receive them.an event was propagated up the containment hierarchy until it was
handled by a component.

This required components to receive events that they did not process, and it wasted
valuable time.

The delegation event model eliminates this overhead.

an event is an object that describes a state change in a source. It can be generated as a
consequence of a person interacting with the elements in a graphical user interface.
Event Sources

A source is an object that generates an event. This occurs when the internal state of
that object changes in some way.

Each type of event has its own registration method. Here is the general form:

public void addTypeListener (TypeListener el)
Type is the name of the event, and el is a reference to the event listener
For example, the method that registers a keyboard event listener is called
addKeyListener().
When an event occurs, all registered listeners are notified and receive a copy of the
event object. This is known as multicasting the event.
Some sources may allow only one listener to register. The general form of such a
method is this:

public void addTypeListener(TypeListener el) throws

java.util. TooManyListenersException
When such an event occurs, the registered listener is notified. This is known as
unicasting the event.
A source must also provide a method that allows a listener to unregister an interest in
a specific type of event. The general form of such a method is this:
public void removeTypeListener(TypeListener el)

Event Listeners

A listener is an object that is notified when an event occurs.
It has two major requirements.

e First, it must have been registered with one or more sources to receive notifications
about specific types of events.
e Second, it must implement methods to receive and process these notifications.

Event Classes
At the root of the Java event class hierarchy is EventObject, which is in java.util.
Constructor
EventObject(Object src)
src is the object that generates this event.

Methods

Object getSource()-returns the source of the event.
toString()- returns the string equivalent of the event.

e EventObject is a superclass of all events.
AWTEvent is a superclass of all AWT events that are handled by the delegation
event model.

Event Class Description

ActionEvent Generated when a button is pressed, a list item is double-clicked, or a menu

item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized, or becomes visible.
ContainerEvent Generated when a component is added to or removed from a container,
FocusEvent Generated when a component gains or loses kevboard focus.

InputEvent Abstract superclass for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also occurs when

a choice selection is made or a checkable menu item is selected or
deselected.

KeyEvent Generated when input is received from the keyboard.

MouscEvent Generated when the mouse is dragged, moved, clicked, pressed, or released;
also generated when the mouse enters or exits a component.

MouseWheelEvent Generated when the mouse wheel 1s moved.
TextEvent Generated when the value of a text area or text field is changed.
WindowEvent Generated when a window is activated, closed, deactivated, deiconified,

iconified, opened, or quit

Table 23-1 Commonly Used Event Classes in java.awt.event

1.The ActionEvent Class

Constructor
e ActionEvent(Object src, int type, String cmd)
e ActionEvent(Object src, int type, String cmd, int modifiers)
e ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is
specified by type, and its command string is cmd. The argument modifiers indicates which
modifier keys (alt, ctrl, meta, and/or shift) were pressed when the event was generated.

The when parameter specifies when the event occurred.
Methods

e String getActionCommand()-obtain the command name for the invoking
ActionEvent object.

e int getModifiers()-returns a value that indicates which modifier keys (alt, ctrl, meta,
and/or shift) were pressed when the event was generated.

e long getWhen()-returns the time at which the event took place.

2.The AdjustmentEvent Class
Constructors

AdjustmentEvent(Adjustable src, int id, int type, int data)
Here, src is a reference to the object that generated this event. The id specifies the event.
The type of the adjustment is specified by type, and its associated data is data.

METHODS
e Adjustable getAdjustable()- returns the object that generated the event
e int getAdjustmentType()-returns one of the constants defined by AdjustmentEvent.

CONSTANTS

BLOCK DECREMENT The user clicked inside the seroll bar to decrease s value.

BLOCK _INCREMENT The user clicked inside the scroll bar to mcrease is value.

TRACK The shider was dragged.

UNIT_DECREMENT The button at the end of the scroll bar was clicked o decrease
its value.

UNIT_INCEEMENT The button at the end of the scroll bar was clicked w increase
1t value.

int getValue()-The amount of the adjustment can be obtained .

3.The ComponentEvent Class

A ComponentEvent is generated when the size, position, or visibility of a component is
changed.

CONSTRUCTORS

ComponentEvent(Component src, int type)

src is a reference to the object that generated this event. The type of the event is specified

by type

METHODS
e Component getComponent()- returns the component that generated the event.

CONSTANTS
COMPONENT_HIDDEN The component was hidden.
COMPONENT_MOVED The component was moved.
COMPONENT_RESIZED The compoment was resized.
COMPONENT_SHOWN The component became visible.

4.The ContainerEvent Class
A Container Event is generated when a component is added to or removed from a container.

CONSTRUCTORS

ContainerEvent(Component src, int type, Component comp)

src is a reference to the container that generated this event. The type of the event is
specified by type, and the component that has been added to or removed from the container
is comp.

METHODS
e Container getContainer()- obtain a reference to the container that generated this
event.

e Component getChild()-d returns a reference to the component that was added to or
removed from the container.

CONSTANTS

e COMPONENT_ADDED
COMPONENT_REMOVED.

5.The FocusEvent Class

CONSTRUCTORS
e FocusEvent(Component src, int type)
e FocusEvent(Component src, int type, boolean temporaryFlag)
e FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

src is a reference to the component that generated this event. The type of the event is
specified by type. The argument temporaryFlag is set to true if the focus event is temporary.
Otherwise, it is set to false.

METHODS
e Component getOppositeComponent()-The opposite component is returned.
e boolean isTemporary()-returns true if the change is temporary. Otherwise, it returns
false

CONSTANTS
e FOCUS_GAINED
e FOCUS LOST

6.The InputEvent Class

The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for
component input events. Its subclasses are KeyEvent and MouseEvent.

METHODS
e boolean isAltDown()
e boolean isAltGraphDown()
e boolean isControlDown()

boolean isMetaDown()

boolean isShiftDown()

int getModifiers()- obtain a value that contains all of the original modifier flags
int getModifiersEx()- obtain the extended modifiers.

CONSTANTS

ALT_MASEK BUTTONZ_MASK META_MASK
ALT_GRAFH_MASK BUTTONS_MASK SHIFT_MASK
BUTTONI_MASK CTRL_MASK

However, because of possible conflicts between the modifiers used by keyboard events and
mouse events, and other issues, the following extended modifier values were added:

ALT_DOWN_MASK BUTTONZ _DOWN_MASK META_DOWN_MASK
ALT_GRAPH_DOWN_MASK BUTTONI_DOWN_MASK SHIFT_DOWN_MASK
BUTTON]_DOWN_MASK CTRL_DOWN_MASK

7.The ItemEvent Class
generated when a check box or a list item is clicked or when a checkable menu item is
selected or deselected

CONSTRUCTORS
ItemEvent(ltemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. The type of the event is
specified by type. The specific item that generated the item event is passed in entry. The
current state of that item is in state.

METHODS
e Object getltem()-obtain a reference to the item that generated an event.
e |temSelectable getltemSelectable()- obtain a reference to the IltemSelectable object
that generated an event.
e int getStateChange()- returns the state change (that is, SELECTED or
DESELECTED) for the event.

CONSTANTS
DESELECTED The user deselected an item.
SELECTED The user selected an item.

8.The KeyEvent Class
generated when keyboard input occurs.

CONSTRUCTOR

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

src is a reference to the component that generated the event. The type of the event is
specified by type. The system time at which the key was pressed is passed in when. The
modifiers argument indicates which modifiers were pressed when this key event occurred.

METHODS

e char getKeyChar()- returns the character that was entered. If no valid character is
available, then getKeyChar() returns CHAR_UNDEFINED. When a KEY_TYPED

event occurs, getKeyCode() returns VK_UNDEFINED

e int getKeyCode()-returns the key code.

CONSTANTS
VE_ALT VE_DOWN VE_LEFT VE_RIGHT
VE_CANCEL VE_ENTER VE_PAGE DOWN VE_SHIFT
VE_CONTROL VE_ESCAPE VE_PAGE _UP VE_UP

KEY_PRESSED,
KEY_RELEASED,
KEY_TYPED.

VK_0 through VK_9
VK_A through VK_Z

VK constants specify virtual key codes

9.The MouseEvent Class

CONSTRUCTORS

MouseEvent(Component src, int type, long when, int modifiers, int x, int y, int clicks,
boolean triggersPopup)

src is a reference to the component that generated the event. The type of the event is
specified by type. The system time at which the mouse event occurred is passed in when.
The modifiers argument indicates which modifiers were pressed when a mouse event
occurred. The coordinates of the mouse are passed in x and y. The click count is passed in
clicks. The triggersPopup flag indicates if this event causes a pop-up menu to appear on this
platform

METHODS

int getX()- return the X coordinates

int getY()-return the Y coordinates

Point getPoint()- obtain the coordinates of the mouse.

void translatePoint(int x, int y) - changes the location of the event.

int getClickCount()- obtains the number of mouse clicks for this event

boolean isPopupTrigger()- tests if this event causes a pop-up menu to appear on this
platform.

int getButton()- returns a value that represents the button that caused the event.

The return value will be one of these constants defined by MouseEvent:

| NoBUTTON | BUTTONI | BUTTON? | BUTTONS |

Point getLocationOnScreen()
int getXOnScreen()
int getYOnScreen()

CONSTANTS

MOUSE_CLICKED The user clicked the mouse.
MOUSE_DRAGGED The user dragged the mouse.
MOUSE_ENTEERED The mouse entered a component.
MOUSE_EXITED The mouse exited from a component.
MOUSE_MOVED The mouse moved.
MOUSE_PRESSED The mouse was pressed.
MOUSE_RELEASED The mouse was released.
MOUSE_WHEEL The mouse wheel was moved.

10.The MouseWheelEvent Class

CONSTRUCTORS
MouseWheelEvent(Component src, int type, long when, int modifiers, int x, int y, int
clicks, boolean triggersPopup, int scrollHow, int amount, int count)

src is a reference to the object that generated the event. The type of the event is specified by
type. The system time at which the mouse event occurred is passed in when. The modifiers
argument indicates which modifiers were pressed when the event occurred. The coordinates
of the mouse are passed in x and y. The number of clicks is passed in clicks. The
triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform.

The scrollHow value must be either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.
The number of units to scroll is passed in amount. The count parameter indicates the number
of rotational units that the wheel moved

METHODS

e int getWheelRotation()-returns the number of rotational units. If the value is positive,
the wheel moved counterclockwise. If the value is negative, the wheel moved
clockwise.

e int getScrollType()-It returns either WHEEL_UNIT_SCROLL or
WHEEL_BLOCK_SCROLL.

e int getScrollAmount()-If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the
number of units to scroll by calling getScrollAmount().

CONSTANTS
WHEEL _BLOCEK _SCROLL A page-up or page-down scroll event occurred.
WHEEL_UNIT_SCROLL A line-up or ine-down seroll event accurred.

11.The TextEvent Class

CONSTRUCTORS
TextEvent(Object src, int type)
src is a reference to the object that generated this event. The type of the event is specified

by type.

CONSTANTS
TEXT_VALUE_CHANGED.

12.The WindowEvent Class

CONSTRUCTORS
e WindowEvent(Window src, int type, Window other)
e WindowEvent(Window src, int type, int fromState, int toState)
e WindowEvent(Window src, int type, Window other, int fromState, int toState)

other specifies the opposite window when a focus or activation event occurs. The fromState
specifies the prior state of the window, and toState specifies the new state that the window
will have when a window state change occurs.

METHODS
e Window getWindow()-returns the Window object that generated the event.
e Window getOppositeWindow()-return the opposite window (when a focus or activation
event has occurred),
e int getOldState() -return the previous window state,
e int getNewState()- return the current window state.

CONSTANTS
WINDOW _ACTIVATED The window was activated.
WINDOW _CLOSED The window has been closed.
WINDOW _CLOSING The user requested that the window be closed.
WINDOW _DEACTIVATED The window was deactivated.
WINDOW _DEICONIFIED The window was deicomfied.
WINDOW _GAINED_FOCUS The window gained input focus.
WINDOW _ICONIFIED The window was iconified.
WINDOW _LOST_FOCUS The window lost mput focus.
WINDOW _OPENED The window was opened.
WINDOW _STATE CHANGED The state of the window changed.

Sources of Events

Event Source Description

Button Generates action events when the button is pressed.

Check box Generates item events when the check box is selected or deselected.
Choice Cenerates item events when the choice is changed.

List Generates action events when an item is double-clicked; generates item

events when an item s selected or deselected.

Menu itemn Generates action events when a menuo item is selected; generates item
events when a checkable menn item is selected or deselected.

Scroll bar Cenerates adjustment events when the seroll bar is manipulated.
Text components Generates text events when the user enters a character.
Window Generates window events when a window 1s activated, closed, deactivated,

deiconified, iconified, opened, or quit.

Event Listener Interfaces

Interface Description

ActnonListener Defines one method to receive action events.
AdjustmentListener Defines one method to receive adjustment events.
ComponentListener Defines four methods to recognize when a component is hidden,

mowvesdd, resized, or shown.

ContainerListener Defines two methods to recognize when a component is added tooor
removed from a container.

FocusListener Defines two methods to recogmize when a component gains or loses
kevboard focus.

ItemListener Defines one method o recognize when the state of an item changes.

KeyListener Defines three methods to recognize when a key is pressed, released, or
typed.

MouseListener Defines five methods to recogmize when the mouse s chicked, enters a

COmponent, exits a component, is pressed, or is released.

MouseMotonListener Defines two methods to recognize when the mouse is dragged or moved.

MouseWheelListener Defines one method to recognize when the mounse wheel is moved.

TextListener Defines one method to recognize when a text value changes.

WindowFoousListener Defines two methods to recognize when a window gains or loses input
forcus.

WindowListener Defines seven methods to recognize when a window is activated, closed,

deactivated, deiconified, iconified, opened, or guit.

Table 23-3 Commonly Used Event Listener Interfaces

1.The ActionListener Interface

METHODS
e void actionPerformed(ActionEvent ae)

2.The AdjustmentListener Interface

METHODS
e void adjustmentValueChanged(AdjustmentEvent ae)

3.The ComponentListener Interface

METHODS
e void componentResized(ComponentEvent ce)
e void componentMoved(ComponentEvent ce)
e void componentShown(ComponentEvent ce)
e void componentHidden(ComponentEvent ce)

4.The ContainerListener Interface
METHODS
e void componentAdded(ContainerEvent ce)
e void componentRemoved(ContainerEvent ce)

5.The FocusListener Interface
METHODS
e void focusGained(FocusEvent fe)
e void focusLost(FocusEvent fe)

6.The ItemListener Interface
METHODS
e void itemStateChanged(ltemEvent ie)

7.The KeyListener Interface
METHODS
e void keyPressed(KeyEvent ke)
e void keyReleased(KeyEvent ke)
e void keyTyped(KeyEvent ke)

8.The MouseListener Interface

METHODS

void mouseClicked(MouseEvent me)

e void mouseEntered(MouseEvent me)

e void mouseExited(MouseEvent me)

e void mousePressed(MouseEvent me)
e void mouseReleased(MouseEvent me)

9.The MouseMotionListener Interface
METHODS
e void mouseDragged(MouseEvent me)
e void mouseMoved(MouseEvent me)

10.The MouseWheelListener Interface
METHODS
e void mouseWheelMoved(MouseWheelEvent mwe)

11.The TextListener Interface
METHODS
e void textChanged(TextEvent te)

12.The WindowFocusListener Interface
METHODS
e void windowGainedFocus(WindowEvent we)
e void windowLostFocus(WindowEvent we)

13.The WindowL.istener Interface

METHODS
e void windowActivated(WindowEvent we)
e void windowClosed(WindowEvent we)
e void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)
void windowDeiconified(WindowEvent we)
void windowlconified(WindowEvent we)
void windowOpened(WindowEvent we)

