
String Handling
The String Constructors
1.To create an empty String, call the default constructor.

String s = new String();
will create an instance of String with no characters in it.
2.To create a String initialized by an array of characters, use the constructor shown here:

String(char chars[])
char chars[] = { 'a', 'b', 'c' };
 String s = new String(chars);

 This constructor initializes s with the string "abc".

3.You can specify a subrange of a character array as an initializer using the following
constructor:

String(char chars[], int startIndex, int numChars)
Here, startIndex specifies the index at which the subrange begins, and numChars specifies
the number of characters to use.
char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
String s = new String(chars, 2, 3);

This initializes s with the characters cde.

4.You can construct a String object that contains the same character sequence as another
String object using this constructor:

 String(String strObj)
Here, strObj is a String object.

5. the String class provides constructors that initialize a string when given a byte array. Two
forms are shown here:

String(byte asciiChars[])
 String(byte asciiChars[], int startIndex, int numChars)

String Length

The length of a string is the number of characters that it contains. To obtain this value, call the
length() method, shown here:

int length()

Special String Operations

1.String Literals
For each string literal in your program, Java automatically constructs a String object. Thus,
you can use a string literal to initialize a String object.

Because a String object is created for every string literal, you can use a string literal any place
you can use a String object. For example, you can call methods directly on a quoted string as
if it were an object reference, as the following statement shows. It calls the length() method
on the string "abc".

2.String Concatenation

The + operator, concatenates two strings,

3.String Concatenation with Other Data Types
You can concatenate strings with other types of data.

Output
He is 9 years old.

Character Extraction
1.charAt()
To extract a single character from a String, you can refer directly to an individual character via
the charAt() method. It has this general form:

char charAt(int where)

2.getChars()
If you need to extract more than one character at a time, you can use the getChars() method.
It has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)
Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. Thus, the substring
contains the characters from sourceStart through sourceEnd–1. The array that will receive the
characters is specified by target. The index within target at which the substring will be copied
is passed in targetStart.

3.getBytes()

 ​getBytes(), and it uses the default character-to-byte conversions provided by the platform.
Here is its simplest form:

byte[] getBytes()
4.toCharArray()
If you want to convert all the characters in a String object into a character array, the easiest
way is to call toCharArray(). It returns an array of characters for the entire string. It has this
general form:

char[] toCharArray()

String Comparison
1.equals()

T​o compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)
2.equalsIgnoreCase()
To perform a comparison that ignores case differences, call equalsIgnoreCase().

boolean equalsIgnoreCase(String str)

3.regionMatches()
The regionMatches() method compares a specific region inside a string with another specific
region in another string.

● boolean regionMatches(int startIndex, String str2, int str2StartIndex, int
numChars)

● boolean regionMatches(boolean ignoreCase, int startIndex, String str2, int
str2StartIndex, int numChars)

4.startsWith()
The startsWith() method determines whether a given String begins with a specified string.

● boolean startsWith(String str)
"Foobar".startsWith("Foo") returns true.

● boolean startsWith(String str, int startIndex)
 ​startIndex specifies the index into the invoking string at which point the search will begin.

"Foobar".startsWith("bar", 3) returns true.
5. endsWith()

 endsWith() determines whether the String in question ends with a specified string.

boolean endsWith(String str)
"Foobar".endsWith("bar") returns true.
equals() Versus ==
 the equals() method compares the characters inside a String object. The == operator
compares two object references to see whether they refer to the same instance.

The variable s1 refers to the String instance created by "Hello". The object referred to
by s2 is created with s1 as an initializer. Thus, the contents of the two String objects
are identical, but they are distinct objects. This means that s1 and s2 do not refer to
the same objects and are, therefore, not ==, as is shown here by the output of the
preceding example:
output
Hello equals Hello -> true
Hello == Hello -> false

6.compareTo()
General form:

 int ​compareTo​(​String str​)
 Here, str is the String being compared with the invoking String.

If you want to ignore case differences when comparing two strings, use
compareToIgnoreCase()​, as shown here:

 int ​compareToIgnoreCase​(String str)

Searching Strings

1.indexOf()
Searches for the first occurrence of a character or substring.
 ​ int indexOf(char ch)
To search for the first occurrence of a substring

int indexOf(String str)
You can specify a starting point for the search using these forms:

int indexOf(char ch, int startIndex)
int indexOf(String str, int startIndex)

 startIndex specifies the index at which point the search begins. For indexOf(), the search
runs from startIndex to the end of the string.

2.lastIndexOf()
Searches for the last occurrence of a character or substring.
To search for the last occurrence of a character, use

int lastIndexOf(char ch)
To search for the last occurrence of a substring, use

int lastIndexOf(String str)
You can specify a starting point for the search using these forms:

int indexOf(String str, int startIndex)
int lastIndexOf(String str, int startIndex)

 For lastIndexOf(), the search runs from startIndex to zero.

Modifying a String

1.substring()

String substring(int startIndex)
 startIndex specifies the index at which the substring will begin

String substring(int startIndex, int endIndex)
 startIndex specifies the beginning index, and endIndex specifies the stopping point. The
string returned contains all the characters from the beginning index, up to, but not including,
the ending index.

2.concat()

String concat(String str)
concat() performs the same function as +.
String s1 = "one";
String s2 = s1.concat("two");
 puts the string "onetwo" into s2.
It generates the same result as the following sequence:

String s1 = "one";
 String s2 = s1 + "two";

3.replace()

String replace(char original, char replacement)
, original specifies the character to be replaced by the character specified by replacement.

String s = "Hello".replace('l', 'w');

puts the string "Hewwo" into s.

String replace(CharSequence original, CharSequence replacement)
 replaces one character sequence with another.

4.trim()
 returns a copy of the invoking string from which any leading and trailing whitespace has been
removed. It has this general form:

String trim()

This puts the string "Hello World" into s.

Changing the Case of Characters Within a String
1. toLowerCase()
converts all the characters in a string from uppercase to lowercase.

String toLowerCase()
2. toUpperCase()
 converts all the characters in a string from lowercase to uppercase.

String toUpperCase()

Event Handling

The Delegation Event Model

● Defines standard and consistent mechanisms to generate and process events.
● Its concept is quite simple: a source generates an event and sends it to one or more

listeners. In this scheme, the listener simply waits until it receives an event.
● Once an event is received, the listener processes the event and then returns.
● The advantage of this design is that the application logic that processes events is

cleanly separated from the user interface logic that generates those events.
● A user interface element is able to “delegate” the processing of an event to a

separate piece of code.
● In the delegation event model, listeners must register with a source in order to receive

an event notification.
● This provides an important benefit: notifications are sent only to listeners that want to

receive them.an event was propagated up the containment hierarchy until it was
handled by a component.

● This required components to receive events that they did not process, and it wasted
valuable time.

● The delegation event model eliminates this overhead.

Events
an event is an object that describes a state change in a source. It can be generated as a
consequence of a person interacting with the elements in a graphical user interface.
Event Sources

● A source is an object that generates an event. This occurs when the internal state of
that object changes in some way.

● Each type of event has its own registration method. Here is the general form:
 public void addTypeListener (TypeListener el)

● Type is the name of the event, and el is a reference to the event listener
● For example, the method that registers a keyboard event listener is called

addKeyListener().
● When an event occurs, all registered listeners are notified and receive a copy of the

event object. This is known as ​multicasting​ the event.
● Some sources may allow only one listener to register. The general form of such a

method is this:
public void addTypeListener(TypeListener el) throws
 java.util.TooManyListenersException

● When such an event occurs, the registered listener is notified. This is known as
unicasting ​the event.

● A source must also provide a method that allows a listener to unregister an interest in
a specific type of event. The general form of such a method is this:

 ​public void removeTypeListener(TypeListener el)

Event Listeners

● A listener is an object that is notified when an event occurs.
● It has two major requirements.

● First, it must have been registered with one or more sources to receive notifications
about specific types of events.

● Second, it must implement methods to receive and process these notifications.

Event Classes

At the root of the Java event class hierarchy is ​EventObject​, which is in java.util.
Constructor

EventObject(Object src)

src is the object that generates this event.

Methods

Object getSource()-returns the source of the event.
toString()- returns the string equivalent of the event.

● EventObject is a superclass of all events.
● AWTEvent is a superclass of all AWT events that are handled by the delegation

event model.

1.The ActionEvent Class

Constructor

● ActionEvent(Object src, int type, String cmd)
● ActionEvent(Object src, int type, String cmd, int modifiers)
● ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is
specified by type, and its command string is cmd. The argument modifiers indicates which
modifier keys (alt, ctrl, meta, and/or shift) were pressed when the event was generated.

The when parameter specifies when the event occurred.

Methods

● String getActionCommand()​-obtain the command name for the invoking
ActionEvent object.

● int getModifiers()​-returns a value that indicates which modifier keys (alt, ctrl, meta,
and/or shift) were pressed when the event was generated.

● long getWhen()​-returns the time at which the event took place.

2.The AdjustmentEvent Class

Constructors

AdjustmentEvent(Adjustable src, int id, int type, int data)
Here, src is a reference to the object that generated this event. The id specifies the event.
The type of the adjustment is specified by type, and its associated data is data.

METHODS

● Adjustable getAdjustable()​- returns the object that generated the event
● int getAdjustmentType()​-returns one of the constants defined by AdjustmentEvent.

CONSTANTS

int getValue()​-The amount of the adjustment can be obtained .

3.The ComponentEvent Class
A ComponentEvent is generated when the size, position, or visibility of a component is
changed.
CONSTRUCTORS
ComponentEvent(Component src, int type)
 src is a reference to the object that generated this event. The type of the event is specified
by type

METHODS

● Component getComponent()- returns the component that generated the event.

CONSTANTS

4.The ContainerEvent Class
A Container Event is generated when a component is added to or removed from a container.

CONSTRUCTORS
ContainerEvent(Component src, int type, Component comp)
 src is a reference to the container that generated this event. The type of the event is
specified by type, and the component that has been added to or removed from the container
is comp.

METHODS

● Container getContainer()​- obtain a reference to the container that generated this
event.

● Component getChild()​-d returns a reference to the component that was added to or
removed from the container.

CONSTANTS

● COMPONENT_ADDED
● COMPONENT_REMOVED.

5.The FocusEvent Class

CONSTRUCTORS

● FocusEvent(Component src, int type)
● FocusEvent(Component src, int type, boolean temporaryFlag)
● FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

 src is a reference to the component that generated this event. The type of the event is
specified by type. The argument temporaryFlag is set to true if the focus event is temporary.
Otherwise, it is set to false.

METHODS

● Component getOppositeComponent()-The opposite component is returned.
● boolean isTemporary()-returns true if the change is temporary. Otherwise, it returns

false

CONSTANTS

● FOCUS_GAINED
● FOCUS_LOST

6.The InputEvent Class

The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for
component input events. Its subclasses are KeyEvent and MouseEvent.

METHODS

● boolean isAltDown()
● boolean isAltGraphDown()
● boolean isControlDown()

● boolean isMetaDown()
● boolean isShiftDown()
● int getModifiers()- obtain a value that contains all of the original modifier flags
● int getModifiersEx()- obtain the extended modifiers.

CONSTANTS

7.The ItemEvent Class
 generated when a check box or a list item is clicked or when a checkable menu item is
selected or deselected

CONSTRUCTORS
ItemEvent(ItemSelectable src, int type, Object entry, int state)

 Here, src is a reference to the component that generated this event. The type of the event is
specified by type. The specific item that generated the item event is passed in entry. The
current state of that item is in state.

METHODS

● Object getItem()-obtain a reference to the item that generated an event.
● ItemSelectable getItemSelectable()- obtain a reference to the ItemSelectable object

that generated an event.
● int getStateChange()- returns the state change (that is, SELECTED or

DESELECTED) for the event.
CONSTANTS

8.The KeyEvent Class
 generated when keyboard input occurs.

CONSTRUCTOR
KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)
 src is a reference to the component that generated the event. The type of the event is
specified by type. The system time at which the key was pressed is passed in when. The
modifiers argument indicates which modifiers were pressed when this key event occurred.

METHODS
● char getKeyChar()- returns the character that was entered. If no valid character is

available, then getKeyChar() returns CHAR_UNDEFINED. When a KEY_TYPED
event occurs, getKeyCode() returns VK_UNDEFINED

● int getKeyCode()-returns the key code.

CONSTANTS

● KEY_PRESSED,
● KEY_RELEASED,
● KEY_TYPED.
● VK_0 through VK_9
● VK_A through VK_Z

VK constants specify virtual key codes

9.The MouseEvent Class

CONSTRUCTORS
MouseEvent(Component src, int type, long when, int modifiers, int x, int y, int clicks,
boolean triggersPopup)
src is a reference to the component that generated the event. The type of the event is
specified by type. The system time at which the mouse event occurred is passed in when.
The modifiers argument indicates which modifiers were pressed when a mouse event
occurred. The coordinates of the mouse are passed in x and y. The click count is passed in
clicks. The triggersPopup flag indicates if this event causes a pop-up menu to appear on this
platform

METHODS

● int getX()- return the X coordinates
● int getY()-return the Y coordinates
● Point getPoint()- obtain the coordinates of the mouse.
● void translatePoint(int x, int y) - changes the location of the event.
● int getClickCount()- obtains the number of mouse clicks for this event
● boolean isPopupTrigger()- tests if this event causes a pop-up menu to appear on this

platform.
● int getButton()- returns a value that represents the button that caused the event.

The return value will be one of these constants defined by MouseEvent:

● Point getLocationOnScreen()
● int getXOnScreen()
● int getYOnScreen()

CONSTANTS

10.The MouseWheelEvent Class

CONSTRUCTORS
MouseWheelEvent(Component src, int type, long when, int modifiers, int x, int y, int
clicks, boolean triggersPopup, int scrollHow, int amount, int count)

src is a reference to the object that generated the event. The type of the event is specified by
type. The system time at which the mouse event occurred is passed in when. The modifiers
argument indicates which modifiers were pressed when the event occurred. The coordinates
of the mouse are passed in x and y. The number of clicks is passed in clicks. The
triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform.

The scrollHow value must be either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_ SCROLL.
The number of units to scroll is passed in amount. The count parameter indicates the number
of rotational units that the wheel moved

METHODS

● int getWheelRotation()-returns the number of rotational units. If the value is positive,
the wheel moved counterclockwise. If the value is negative, the wheel moved
clockwise.

● int getScrollType()-It returns either WHEEL_UNIT_SCROLL or
WHEEL_BLOCK_SCROLL.

● int getScrollAmount()-If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the
number of units to scroll by calling getScrollAmount().

CONSTANTS

11.The TextEvent Class

CONSTRUCTORS
TextEvent(Object src, int type)
 src is a reference to the object that generated this event. The type of the event is specified
by type.

CONSTANTS
TEXT_VALUE_CHANGED.

12.The WindowEvent Class

CONSTRUCTORS

● WindowEvent(Window src, int type, Window other)
● WindowEvent(Window src, int type, int fromState, int toState)
● WindowEvent(Window src, int type, Window other, int fromState, int toState)

 other specifies the opposite window when a focus or activation event occurs. The fromState
specifies the prior state of the window, and toState specifies the new state that the window
will have when a window state change occurs.

METHODS

● Window getWindow()-returns the Window object that generated the event.
● Window getOppositeWindow()-return the opposite window (when a focus or activation

event has occurred),
● int getOldState() -return the previous window state,
● int getNewState()- return the current window state.

CONSTANTS

Sources of Events

Event Listener Interfaces

1.The ActionListener Interface

METHODS

● void actionPerformed(ActionEvent ae)

2.The AdjustmentListener Interface

METHODS

● void adjustmentValueChanged(AdjustmentEvent ae)

3.The ComponentListener Interface
METHODS

● void componentResized(ComponentEvent ce)
● void componentMoved(ComponentEvent ce)
● void componentShown(ComponentEvent ce)
● void componentHidden(ComponentEvent ce)

4.The ContainerListener Interface
METHODS

● void componentAdded(ContainerEvent ce)
● void componentRemoved(ContainerEvent ce)

5.The FocusListener Interface
METHODS

● void focusGained(FocusEvent fe)
● void focusLost(FocusEvent fe)

6.The ItemListener Interface
METHODS

● void itemStateChanged(ItemEvent ie)

7.The KeyListener Interface
METHODS

● void keyPressed(KeyEvent ke)
● void keyReleased(KeyEvent ke)
● void keyTyped(KeyEvent ke)

8.The MouseListener Interface
METHODS

● void mouseClicked(MouseEvent me)
● void mouseEntered(MouseEvent me)
● void mouseExited(MouseEvent me)
● void mousePressed(MouseEvent me)
● void mouseReleased(MouseEvent me)

9.The MouseMotionListener Interface
METHODS

● void mouseDragged(MouseEvent me)
● void mouseMoved(MouseEvent me)

10.The MouseWheelListener Interface
METHODS

● void mouseWheelMoved(MouseWheelEvent mwe)

11.The TextListener Interface
METHODS

● void textChanged(TextEvent te)

12.The WindowFocusListener Interface
METHODS

● void windowGainedFocus(WindowEvent we)
● void windowLostFocus(WindowEvent we)

13.The WindowListener Interface
METHODS

● void windowActivated(WindowEvent we)
● void windowClosed(WindowEvent we)
● void windowClosing(WindowEvent we)

● void windowDeactivated(WindowEvent we)
● void windowDeiconified(WindowEvent we)
● void windowIconified(WindowEvent we)
● void windowOpened(WindowEvent we)

