
Introduction to AWT: working with frames, graphics, color, font. AWT Control fundamentals.
Swing overview. Java database connectivity: JDBC overview, creating and executing queries,
dynamic queries.

Control Fundamentals
 The AWT supports the following types of controls:

● Labels
● Push buttons
● Check boxes
● Choice lists
● Lists
● Scroll bars
● Text Editing

Adding and Removing Controls

● Component add(Component compObj)
● void remove(Component obj)
●

1.Labels

CONSTRUCTORS

● Label()
● Label(String str)
● Label(String str, int how)

The first version creates a blank label. The second version creates a label that contains the
string specified by str. This string is left-justified. The third version creates a label that
contains the string specified by str using the alignment specified by how. The value of how
must be one of these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER.

METHODS

● void setText(String str)- set or change the text in a label
● String getText()-the current label is returned.
● void setAlignment(int how)- set the alignment of the string within the label
● int getAlignment()-obtain the current alignment

2. Buttons

CONSTRUCTORS

● Button()
● Button(String str)

METHODS

● void setLabel(String str)
● String getLabel()

Each time a button is pressed, an action event is generated. This is sent to any listeners that
previously registered an interest in receiving action event notifications from that component.
Each listener implements the ActionListener interface. That interface defines the
actionPerformed() method, which is called when an event occurs.

3. Check Boxes

CONSTRUCTORS

● Checkbox()
● Checkbox(String str)
● Checkbox(String str, boolean on)
● Checkbox(String str, boolean on, CheckboxGroup cbGroup)
● Checkbox(String str, CheckboxGroup cbGroup, boolean on)

 The fourth and fifth forms create a check box whose label is specified by str and whose
group is specified by cbGroup. If this check box is not part of a group, then cbGroup must be
null.

METHODS

● boolean getState()
● void setState(boolean on)
● String getLabel()
● void setLabel(String str)

To retrieve the current state of a check box, call getState(). To set its state, call setState().
You can obtain the current label associated with a check box by calling getLabel(). To set the
label, call setLabel().

4.Choice Controls

The Choice class is used to create a pop-up list of items from which the user may choose.

CONSTRUCTOR

● Choice()

METHODS

● void add(String name)- name is the name of the item being added. Items are added to
the list in the order in which calls to add() occur.

● String getSelectedItem()
● int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item.
getSelectedIndex() returns the index of the item

● int getItemCount()
● void select(int index)
● void select(String name)

To obtain the number of items in the list, call getItemCount(). You can set the
currently selected item using the select() method with either a zero-based integer
index or a string that will match a name in the list.

● String getItem(int index)-obtain the name associated with the item at that index

 Each listener implements the ItemListener interface. That interface defines the
itemStateChanged() method.

5. Lists
The List class provides a compact, multiple-choice, scrolling selection list.

CONSTRUCTORS

● List()
● List(int numRows)
● List(int numRows, boolean multipleSelect)

 numRows specifies the number of entries in the list that will always be visible

 if multipleSelect is true, then the user may select two or more items at a time. If it is false,
then only one item may be selected.

METHODS

To add a selection to the list, call add(). It has the following two forms:

● void add(String name)
● void add(String name, int index)

 name is the name of the item added to the list. The first form adds items to the end of the list.
The second form adds the item at the index specified by index. Indexing begins at zero.

● String getSelectedItem()
● int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item. If more than
one item is selected, or if no selection has yet been made, null is returned. getSelectedIndex(
) returns the index of the item.

● String[] getSelectedItems()
getSelectedItems() returns an array containing the names of the currently selected items.

● int[] getSelectedIndexes()
 getSelectedIndexes() returns an array containing the indexes of the currently selected items.

● int getItemCount()
● void select(int index)
● String getItem(int index)

 Here, index specifies the index

Lists implement the ActionListener interface. getActionCommand() method can be used to
retrieve the name of the newly selected item.

6. Scroll Bars
Scroll bars are used to select continuous values between a specified minimum and maximum.
Scroll bars may be oriented horizontally or vertically.
CONSTRUCTORS

● Scrollbar()
● Scrollbar(int style)
● Scrollbar(int style, int initialValue, int thumbSize, int min, int max)
❖ The first form creates a vertical scroll bar.
❖ The second and third forms allow you to specify the orientation of the scroll bar.
❖ If style is Scrollbar.VERTICAL, a vertical scroll bar is created.
❖ If style is Scrollbar.HORIZONTAL, the scroll bar is horizontal.
❖ In the third form of the constructor, the initial value of the scroll bar is passed in

initialValue. The number of units represented by the height of the thumb is passed in

thumbSize. The minimum and maximum values for the scroll bar are specified by min
and max.

METHODS

● void setValues(int initialValue, int thumbSize, int min, int max)
● int getValue() -obtain the current value of the scroll bar
● void setValue(int newValue)-newValue specifies the new value for the scroll bar
● int getMinimum()
● int getMaximum()
● void setUnitIncrement(int newIncr)
● void setBlockIncrement(int newIncr)

By default, 1 is the increment added to or subtracted from the scroll bar each time it is
scrolled up or down one line. You can change this increment by calling setUnitIncrement().
By default, page-up and page-down increments are 10.

To process scroll bar events, you need to implement the AdjustmentListener interface.
getAdjustmentType() method can be used to determine the type of the adjustment.
The types of adjustment events are as follows:

7.TextField

CONSTRUCTORS

● TextField()

● TextField(int numChars)
● TextField(String str)
● TextField(String str, int numChars)

METHODS
● String getText()
● void setText(String str)
● String getSelectedText()- obtain the currently selected text
● void select(int startIndex, int endIndex)
● boolean isEditable()
● void setEditable(boolean canEdit)

isEditable() returns true if the text may be changed and false if not. In setEditable(), if
canEdit is true, the text may be changed. If it is false, the text cannot be altered.
There may be times when you will want the user to enter text that is not displayed,
such as a password. You can disable the echoing of the characters as they are typed
by calling setEchoChar()

● void setEchoChar(char ch)
● boolean echoCharIsSet()
● char getEchoChar()

ch specifies the character to be echoed. If ch is zero, then normal echoing is restored.

8. TextArea
CONSTRUCTORS

● TextArea()
● TextArea(int numLines, int numChars)
● TextArea(String str)
● TextArea(String str, int numLines, int numChars)
● TextArea(String str, int numLines, int numChars, int sBars)

Here, numLines specifies the height, in lines, of the text area, and numChars specifies its
width, in characters. Initial text can be specified by str. In the fifth form, you can specify the
scroll bars that you want the control to have. sBars must be one of these values:

METHODS

● void append(String str)
● void insert(String str, int index)
● void replaceRange(String str, int startIndex, int endIndex)

The append() method appends the string specified by str to the end of the current text.
insert() inserts the string passed in str at the specified index. To replace text, call
replaceRange(). It replaces the characters from startIndex to endIndex–1, with the
replacement text passed in str.

Introducing the AWT: Working with Windows, Graphics, and Text

Window Fundamentals

The AWT defines windows according to a class hierarchy that adds functionality and
specificity with each level.
The two most common windows are those derived from Panel, which is used by applets,
and those derived from Frame, which creates a standard application window.
Component
At the top of the AWT hierarchy is the Component class. Component is an abstract class that
encapsulates all of the attributes of a visual component.

Container
The Container class is a subclass of Component. It has additional methods that allow other
Component objects to be nested within it. Other Container objects can be stored inside of a
Container .

Panel
 The Panel class is a concrete subclass of Container. A Panel may be thought of as a
recursively nestable, concrete screen component. Panel is the superclass for Applet. When
screen output is directed to an applet, it is drawn on the surface of a Panel object. In
essence, a Panel is a window that does not contain a title bar, menu bar, or border.

Window
The Window class creates a top-level window. A top-level window is not contained within any
other object; it sits directly on the desktop.

Frame
 Frame encapsulates what is commonly thought of as a “window.” It is a subclass of Window
and has a title bar, menu bar, borders, and resizing corners.

Canvas
Canvas encapsulates a blank window upon which you can draw.

I.Working with Frames

CONSTRUCTORS

● Frame()
● Frame(String title)

METHODS
1.Setting the Window’s Dimensions

● void setSize(int newWidth, int newHeight)
● void setSize(Dimension newSize)
● Dimension getSize() - returns the current size of the window contained within

the width and height fields of a Dimension object.
2.Hiding and Showing a Window

● void setVisible(boolean visibleFlag)
 The component is visible if the argument to this method is true. Otherwise, it is
hidden
3.Setting a Window’s Title

● void setTitle(String newTitle)

4.Closing a Frame Window
When using a frame window, your program must remove that window from the screen
when it is closed, by calling setVisible(false). To intercept a window-close event, you
must implement the windowClosing() method of the WindowListener interface.
Inside windowClosing(), you must remove the window from the screen.

II.Working with Graphics

 A graphics context is encapsulated by the Graphics class and is obtained in two ways:
• It is passed to a method, such as paint() or update(), as an argument.
• It is returned by the getGraphics() method of Component.
1.Drawing Lines

● void drawLine(int startX, int startY, int endX, int endY)

drawLine() displays a line in the current drawing color that begins at startX, startY
and ends at endX, endY.

2.Drawing Rectangles

● void drawRect(int top, int left, int width, int height)
● void fillRect(int top, int left, int width, int height)

To draw a rounded rectangle
● void drawRoundRect(int top, int left, int width, int height, int xDiam, int yDiam)
● void fillRoundRect(int top, int left, int width, int height, int xDiam, int yDiam)

3.Drawing Ellipses and Circles
● void drawOval(int top, int left, int width, int height)
● void fillOval(int top, int left, int width, int height)

4.Drawing Arcs

● void drawArc(int top, int left, int width, int height, int startAngle, int sweepAngle)
● void fillArc(int top, int left, int width, int height, int startAngle, int sweepAngle)

The arc is bounded by the rectangle whose upper-left corner is specified by top, left
and whose width and height are specified by width and height. The arc is drawn from
startAngle through the angular distance specified by sweepAngle. Angles are
specified in degrees. Zero degrees is on the horizontal, at the three o’clock position.
The arc is drawn counterclockwise if sweepAngle is positive, and clockwise if
sweepAngle is negative.

5.Drawing Polygons

● void drawPolygon(int x[], int y[], int numPoints)
● void fillPolygon(int x[], int y[], int numPoints)

The polygon’s endpoints are specified by the coordinate pairs contained within the x
and y arrays. The number of points defined by x and y is specified by numPoints.

III.Working with Color

CONSTRUCTORS

● Color(int red, int green, int blue)
The first constructor takes three integers that specify the color as a mix of red, green, and
blue. These values must be between 0 and 255,

● Color(int rgbValue)
The second color constructor takes a single integer that contains the mix of red, green, and
blue packed into an integer. The integer is organized with red in bits 16 to 23, green in bits 8
to 15, and blue in bits 0 to 7.

● Color(float red, float green, float blue)
The final constructor, Color(float, float, float), takes three float values (between 0.0 and 1.0)
that specify the relative mix of red, green, and blue.

METHODS

1.Using Hue, Saturation, and Brightness

● static int HSBtoRGB(float hue, float saturation, float brightness)
● static float[] RGBtoHSB(int red, int green, int blue, float values[])

HSBtoRGB() returns a packed RGB value compatible with the Color(int) constructor.
RGBtoHSB() returns a float array of HSB values corresponding to RGB integers.

2.getRed(), getGreen(), getBlue()

● int getRed()
● int getGreen()
● int getBlue()
● int getRGB()

3.Setting the Current Graphics Color
● void setColor(Color newColor)
● Color getColor()- obtain the current color

IV.Working with Fonts
Constructors

● Font(String fontName, int fontStyle, int pointSize)
 fontName specifies the name of the desired font.
The style of the font is specified by fontStyle. It may consist of one or more of these three
constants: Font.PLAIN, Font.BOLD, and Font.ITALIC. To combine styles, OR them together.
For example, Font.BOLD | Font.ITALIC specifies a bold, italics style.

METHODS

The Font class defines these variables:

● void setFont(Font fontObj)-To use a font that you have created, you must select it

using setFont(), which is defined by Component.
● Font getFont()- obtain information about the currently selected font.
● String[] getAvailableFontFamilyNames()-Determine the Available Fonts on your

machine.
● Font[] getAllFonts()- returns an array of Font objects for all of the available fonts.
● static GraphicsEnvironment getLocalGraphicsEnvironment()-Since these methods

are members of GraphicsEnvironment, you need a GraphicsEnvironment reference to
call them. You can obtain this reference by using the getLocalGraphicsEnvironment()
static method, which is defined by GraphicsEnvironment.

Swing
The Swing component classes are:

1.JLabel and ImageIcon
CONSTRUCTORS

● JLabel(Icon icon)
● JLabel(String str)
● JLabel(String str, Icon icon, int align)
● ImageIcon(String filename)

Values for align are:
 LEFT, RIGHT, CENTER, LEADING, or TRAILING.

METHODS

● void setIcon(Icon icon)
● void setText(String str)
● Icon getIcon()
● String getText()

2.JTextField

CONSTRUCTORS

● JTextField(int cols)
● JTextField(String str, int cols)
● JTextField(String str)

 str is the string to be initially presented, and cols is the number of columns in the text field. If
no string is specified, the text field is initially empty. If the number of columns is not specified,
the text field is sized to fit the specified string.

3.The Swing Buttons
Swing defines four types of buttons: JButton, JToggleButton, JCheckBox, and
JRadioButton.
AbstractButton contains many methods that allow you to control the behavior of buttons. For
example, you can define different icons that are displayed for the button when it is disabled,
pressed, or selected. Another icon can be used as a rollover icon, which is displayed when
the mouse is positioned over a button. The following methods set these icons:

● void setDisabledIcon(Icon di)
● void setPressedIcon(Icon pi)
● void setSelectedIcon(Icon si)
● void setRolloverIcon(Icon ri)

 Here, di, pi, si, and ri are the icons to be used for the indicated purpose.
3.1 JButton
CONSTRUCTORS

● JButton(Icon icon)
● JButton(String str)
● JButton(String str, Icon icon)

String getActionCommand()-Obtain the action command.

3.2 JToggleButton
CONSTRUCTORS

● JToggleButton(String str)
METHODS

● Object getItem()- obtain a reference to the JToggleButton instance that generated the
event.

● boolean isSelected()-It returns true if the button is selected and false otherwise.

4.Check Boxes

CONSTRUCTOR

● JCheckBox(String str)
It creates a check box that has the text specified by str as a label.
When the user selects or deselects a check box, an ItemEvent is generated. You can obtain
a reference to the JCheckBox that generated the event by calling getItem() on the ItemEvent
passed to the itemStateChanged() method defined by ItemListener.

5.Radio Buttons
CONSTRUCTOR

● JRadioButton(String str)
str is the label for the button.

METHODS
 Elements are then added to the button group via the following method:

● void add(AbstractButton ab)
Here, ab is a reference to the button to be added to the group.

6.JTabbedPane
The general procedure to use a tabbed pane is outlined here:

1. Create an instance of JTabbedPane.
2. Add each tab by calling addTab().

 Tabs are added by calling addTab().
 void addTab(String name, Component comp)

3. . Add the tabbed pane to the content pane.

7.JScrollPane
CONSTRUCTOR

● JScrollPane(Component comp)
The general procedure to use a SCROLL pane is outlined here:

1. Create the component to be scrolled.
2. . Create an instance of JScrollPane, passing to it the object to scroll.
3. . Add the scroll pane to the content pane.

