
Jisy Raju
Asst.Professor CSE

CE, Cherthala

Module 3
Structured Query Language (SQL): Basic SQL Structure, examples, Set
operations, Aggregate Functions, nested sub-queries, Views, assertions and
triggers

3.1 Structured Query Language (SQL)

SQL is a database computer language designed for the retrieval and management of
data in a relational database. SQL stands for Structured Query Language. All the Relational
Database Management Systems (RDMS) like MySQL, MS Access, Oracle, Sybase, Informix,
Postgres and SQL Server use SQL as their standard database language. Originally, SQL was
called SEQUEL (Structured English QUEry Language). SQL uses the terms table, row,
and column for the formal relational model terms relation, tuple, and attribute, respectively.

SQL uses the concept of a catalog—a named collection of schemas in an SQL
environment. An SQL environment is basically an installation of an SQL-compliant RDBMS on a
computer system. A catalog always contains a special schema called
INFORMATION_SCHEMA , which provides information on all the schemas in the catalog and
all the element descriptors in these schemas.

SQL Constraints
● NOT NULL - Ensures that a column cannot have a NULL value
● UNIQUE - Ensures that all values in a column are different
● PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely identifies

each row in a table
● FOREIGN KEY - Uniquely identifies a row/record in another table
● CHECK - Ensures that all values in a column satisfies a specific condition
● DEFAULT - Sets a default value for a column when no value is specified

SQL Commands
● DDL: Data Definition Language
● DML: Data Manipulation Language
● DCL: Data Control Language
● TCL:Transaction Control Language

DDL:The SQL DDL allows specification of not only a set of relations, but also
information about each relation, including:

● The schema for each relation.
● The types of values associated with each attribute.
● The integrity constraints.
● The set of indices to be maintained for each relation.

https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_default.asp

Basic data types used are,

char A fixed-length character string with user-specified length n. The full
form, character, can be used instead.

varchar A variable-length character string with user-specified maximum
length n. The full form, character varying, is equivalent.

int An integer (a finite subset of the integers that is machine dependent). The
full form, integer, is equivalent.

float A floating-point number, with precision of at least n digits.

Main Commands,

CREATE

Creates a new table, a view of a table, or other object in the
database.

ALTER Modifies an existing database object, such as a table.

DROP

Deletes an entire table, a view of a table or other objects in
the database.

Rename Rename a table or its attribute.

Truncate Operation that is used to mark the extents of a table for
deallocation (empty for reuse)

Create

● To create database,
 CREATE DATABASE database_name

● To create Table Statement is used to create tables to store data. Integrity Constraints
can also be defined for the columns while creating the table.

 CREATE TABLE table name(Attribute1 datatype(No.),...An datatype(No));
 CREATE TABLE employee (id number(5),name char(20),dept char(10));

● To create table constraint

CREATE TABLE table_name (A1 datatype constraint, A2 datatype constraint, A3 datatype
constraint, );
 -primary key: The primary key attributes are required to be nonnull and unique.

CREATE TABLE Persons (PID int(10) NOT NULL PRIMARY KEY, LastName varchar(25),
FirstName varchar(25));

 Or
CREATE TABLE Persons (PID int (10) NOT NULL, LastName varchar(25),FirstName
varchar(25), primary key(id));

-Foreign Key
CREATE TABLE Orders (OrderID int NOT NULL PRIMARY KEY, OrderNumber int NOT
NULL, PersonID int, FOREIGN KEY (PID) REFERENCES Persons(PID));

ALTER:

● To add column
 ALTER TABLE table_name ADD column_name datatype;

● To delete column
 ALTER TABLE table_name Drop column column_name;

DROP:
DROP DATABASE database_name;
DROP TABLE table_name;

RENAME:

● To rename a table
 RENAME TABLE tbl_name TO new_tbl_name;

● To rename a column
 ALTER TABLE table_name Rename column old column name to new name;

DML: The SQL commands that deals with the manipulation of data present in database belong
to DML or Data Manipulation Language and this includes most of the SQL statements.

SELECT used to retrieve data from the a database.

UPDATE used to update existing data

INSERT used to insert data into a table.

DELETE used to delete records

INSERT
 INSERT INTO tablename (column1, column2, ..)VALUES (value1, value2,.. .);
 OR
 INSERT INTO table_name VALUES (value1, value2, value3, ...);

SELECT

● To select a entire table
 SELECT * FROM table_name;

● To select column
 SELECT column1, column2, ...FROM table_name;

● To select rows
 SELECT column1, column2, ...FROM table_name WHERE condition;

UPDATE
 UPDATE table_name SET column1 = value1, column2 = value2,... WHERE condition;

DELETE

● To delete all rows
 DELETE FROM table_name;

● To delete specific row
 DELETE FROM table_name WHERE condition;

DCL : DCL mainly deals with the rights, permissions and other controls of the database system

GRANT gives user’s access privileges to database.

REVOKE withdraw user’s access privileges given by using the
GRANT command.

GRANT
 GRANT privilege_name ON Table_name TO user_name;
 Eg. GRANT SELECT ON employee TO user1

REVOKE
 REVOKE privilege_name ON Table_name FROM user_name;
 Eg. REVOKE SELECT ON employee FROM user1;

TCL
Transaction Control Language(TCL) commands are used to manage transactions in the
database. These are used to manage the changes made to the data in a table by DML
statements.

COMMIT command is used to permanently save any transaction into the database.

ROLLBACK command to rollback changes

SAVEPOINT command is used to temporarily save a transaction so that you can rollback
to that point whenever required.

COMMIT:
 Syntax- COMMIT;

ROLLBACK:

● The ROLLBACK command to rollback those changes, if they were not committed using
the COMMIT command

 Rollback;

● The command restores the database to last committed state by using SAVEPOINT
command.

 ROLLBACK TO savepoint_name;

SAVEPOINT
 SAVEPOINT savepoint_name;

3.2 Basic SQL Structure
The basic structure of an SQL query consists of three clauses: select, from,

and where. The query takes as its input the relations listed in the from clause,
operates on them as specified in the where and select clauses, and then produces
a relation as the result.

3.2.1 Queries on a Single Relation

Let us consider the below table Faculty and DEPT,

FI
D

FNAME DEPT
ID

SALAR
Y

1 JISY 1 35000

2 SANTHY 1 30000

3 SWETHA 2 25000

DEPT
ID

DEPTNAME Block

1 CS New

2 EC New

3 EE old

Queries on a Single Relation
Let us consider a simple query using our Faculty table, “Find the names of all instructors.
 select FNAME from Faculty;

The result is a relation consisting of a single attribute. If want to force the elimination of
duplicates, we insert the keyword distinct after select. We can rewrite the preceding query as:

FID FNAME DEPTNAME

1 JISY 1

2 SANTHY 1

3 SWETHA 2

 select distinct DEPTNAME from FACULTY;

DEPT

CS

EC

SQL allows us to use the keyword all to specify explicitly that duplicates are not removed:
 select all DEPTNAME from DEPT;

The select clause may also contain arithmetic expressions involving the operators +, −, ∗, and /
operating on constants or attributes of tuples. For example,the query returns a relation that is
the same as the Faculty relation, except that the attribute salary is multiplied by 1.1.

 select FID , FNAME, SALARY * 1.1 from Faculty;
SQL allows the use of the logical connectives and, or, and not in the where
clause. The operands of the logical connectives can be expressions involving the
comparison operators <, <=, >, >=, =, and <>.
 select FNAME from Faculty where SALARY>30000;

3.2.2 Queries on Multiple Relations
Consider two tables,

CID NAME Addr

1 Manju abc

2 Jisy cde

3 Vishnu efg

4 Meera hij

OID CID AMOUNT

1 2 100

2 1 250

3 4 300

4 3 400

● Retrieve CID, Address and amount from relation CUSTOMER and ORDER
whose name= jisy

SELECT CUSTOMER.CID, Addr, AMOUNT FROM CUSTOMER, ORDER WHERE
CUSTOMERS.CID = ORDERS.CID and NAME=’Jisy’;

● Retrieve customer id, name, Address and amount from relation CUSTOMER
and ORDER

 SELECT CUSTOMER.CID, NAME, Addr, AMOUNT FROM CUSTOMER, ORDER
 WHERE CUSTOMERS.CID = ORDERS.CID;

Join
 Select CID, NAME, Addr, AMOUNT from CUSTOMER Natural join ORDER
Select CID, NAME, Addr, AMOUNT from CUSTOMER Inner join ORDER on
CUSTOMER.CID = ORDER.CID;
SQL aliases/ correlation name/ tuple variable.
SQL aliases are used to give a table, or a column in a table, a temporary name.

● To rename column,
 Select old column name as new name from table name;

 Eg. Select CID as CustomerID , Name from CUSTOMER;

● To rename table

 Select Name from Customer as Cust where CID=1;
 SELECT C.CID, NAME, Addr, AMOUNT FROM CUSTOMER as C, ORDER
 WHERE C.CID = ORDERS.CID;

String Operations

SQL specifies strings by enclosing them in single quotes, for example, ’Computer’. The
SQL standard specifies that the equality operation on strings is case sensitive; as a result the
expression “ ’computer’ = ’Computer’ ” evaluates to false.
 SQL also permits a variety of functions on character strings, such as concatenating
(using “ ||”), extracting substrings, finding the length of strings, converting strings to uppercase
(using the function upper(s) where s is a string) and lowercase (using the function lower(s)),
removing spaces at the end of the string (using trim(s)). Pattern matching can be performed on
strings, using the operator like. We describe patterns by using two special characters:

• Percent (%): multiple character
• Underscore (_): single character.

SELECT column1, column2, ...FROM table_name WHERE columnN LIKE pattern;
SELECT * FROM CUSTOMER WHERE Name LIKE 'a%';

WHERE CustomerName LIKE 'a%' Finds any values that start with "a"

WHERE CustomerName LIKE '%a' Finds any values that end with "a"

WHERE CustomerName LIKE '%or%' Finds any values that have "or" in any
position

WHERE CustomerName LIKE '_r%' Finds any values that have "r" in the
second position

WHERE CustomerName LIKE 'a_%_%' Finds any values that start with "a" and are
at least 3 characters in length

WHERE ContactName LIKE 'a%o' Finds any values that start with "a" and
ends with "o"

SQL ORDER BY

The ORDER BY statement in sql is used to sort the fetched data in either ascending or
descending according to one or more columns. By default ORDER BY sorts the data in
ascending order.
 SELECT column1, column2, ...FROM table_name ORDER BY column1,
 column2, ... ASC/DESC;
 Eg. SELECT NAME FROM CUSTOMER ORDER BY Name DESC;

NAME

Vishnu

Manju

Jisy

SQL BETWEEN Operator
The BETWEEN operator selects values within a given range. The values can be numbers, text,
or dates. The BETWEEN operator is inclusive: begin and end values are included.

SELECT column_name(s) FROM table_name WHERE column_name BETWEEN
value1 AND value2;

SELECT * FROM ORDER WHERE AMOUNT BETWEEN 100 AND 350;

OID CID AMOUNT

1 2 100

2 1 250

3 4 300

3.3 SET OPERATIONS
 The SQL operations union, intersect, and except operate on relations and
correspond to the mathematical set-theory operations ∪, ∩, and −. Consider two
tables First and Second,

ID Name

1 JISY

2 SANTHY

ID Name

3 SWETHA

2 SANTHY

UNION Operation:is used to combine the results of two or more SELECT statements. However
it will eliminate duplicate rows from its resultset. In case of union, number of columns and
datatype must be same in both the tables, on which UNION operation is being applied.
SELECT * FROM First UNION SELECT * FROM Second;

ID Name

1 JISY

2 SANTHY

3 SWETHA

UNION ALL:This operation is similar to Union. But it also shows the duplicate rows.
SELECT * FROM First UNION ALL SELECT * FROM Second;

ID Name

1 JISY

2 SANTHY

3 SWETHA

2 SANTHY

INTERSECT: Intersect operation is used to combine two SELECT statements, but it only retuns
the records which are common from both SELECT statements. In case of Intersect the number
of columns and datatype must be same
SELECT * FROM First INTERSECT SELECT * FROM Second;

ID Name

2 SANTHY

Minus/ Except:It combines the result of two SELECT statements. Minus operator is used to
display the rows which are present in the first query but absent in the second query.
SELECT * FROM First Except SELECT * FROM Second;

ID Name

1 JISY

SELECT * FROM Second MINUS SELECT * FROM First ;

ID Name

3 SWETHA

3.4 Aggregate Functions
Aggregate functions are functions that take a collection (a set or multiset) of values as input and
return a single value.

3.4.2 Basic Aggregation
 SQL offers five built-in aggregate functions:

● Average: avg
● Minimum: min
● Maximum: max
● Total: sum
● Count: count

 Select Aggregate fn(column name) from table_name where condition;

 Stud

RollNo. Name Mark Dept

1 A 40 cs

2 B 36 cs

3 C 28 ec

4 B 30 ec

5 F 46 ee

6 G 34 cs

AVG(): SELECT AVG(column_name) FROM table_name WHERE condition;
 Select avg(Mark) from Stud;

COUNT(): The aggregate function count used to count the number of tuples in a relation.
 Select Count(*) from Stud;

Count(*)

6

Select Count(*) from Stud where Name=’B’;

Count(*)

2

Select Count (Distinct Name) from Stud;

Name

A

B

C

F

G

MIN(): The MIN() function returns the smallest value of the columns.
 Select Min(Mark) from Stud ;

Min

28

Max(): The MAX() function returns the largest value of the selected column.
 Select Max(Mark) from Stud ;

Max

46

Sum(): The SUM() function returns the total sum of a numeric column.
 Select sum(Mark) from Stud ;
 Select sum(M1+M2) from Stud ; (also possible)

3.4.2 Aggregation with Group by: The GROUP BY statement is often used with aggregate
functions.
 Select Aggregate fn(column name) from table_name group by column name;
 Select Dept, Count(RollNo) from Stud Group By Dept;

Dept Count

cs 3

ec 2

ee 1

Group by using the HAVING clause: Grouping data with certain condition.
SELECT column_name(s) FROM table_name WHERE condition GROUP BY column name(s)
HAVING condition
 Select Dept, Count(RollNo) from Stud Group By Dept Having Mark>35;

Dept Count

cs 2

ec 0

ee 1

3.4.3 Aggregation with Null and Boolean Values

In general, aggregate functions treat nulls according to the following rule: All aggregate
functions except count (*) ignore null values in their input collection. As a result of null values
being ignored, the collection of values may be empty. The count of an empty collection is
defined to be 0, and all other aggregate operations return a value of null when applied on an
empty collection. A Boolean data type that can take values true, false, and unknown.

3.5 Nested sub-queries
A Subquery or Inner query or a Nested query is a query within another SQL query and
embedded within the WHERE clause. A subquery is a SELECT statement that is nested within
another SELECT statement and which return intermediate results. The result of inner query is
used in execution of outer query.

Consider the relation Stud, Course and Scourse

Stud
SID Name Mark Dept

1 A 40 cs

2 B 36 cs

3 C 28 ec

4 B 30 ec

5 F 46 ee

6 G 34 cs

 Course
CID Cname

c1 DBMS

c2 DS

c3 CP

 Scourse
SID CID

1 c1

1 c2

2 c3

3 c2

4 c3

● Independent Nested Queries: In independent nested queries, query execution starts

from innermost query to outermost queries. The execution of inner query is independent
of outer query, but the result of inner query is used in execution of outer query. Various
operators like IN, NOT IN, ANY, ALL etc are used in writing independent nested queries.

3.5.1 IN (Set Membership)

The IN connective for set membership, where the set is a collection of values produced
by a select clause. The NOT IN connective for the absence of set membership.

SELECT column-names FROM table-name1 WHERE value IN (SELECT column-name

FROM table-name2 WHERE condition)

 Q1. If we want to find out SID who are enrolled in Cname ‘DS’ or ‘DBMS’.

From Course table, we can find out CID for Cname ‘DS’ or DBMS’ and we can use these CIDs

for finding SIDs from Scourse TABLE.

STEP 1: Finding CID for Cname =’DS’ or ‘DBMS’
 Select CID from Course where Cname = ‘DS’ or Cname = ‘DBMS’;

STEP 2: Using CID of step 1 for finding SID
 Select SID from Scourse where CID IN (Select CID from Course where Cname = ‘DS’
 or Cname = ‘DBMS’);

Q2. Find out names of STUDENTs who have either enrolled in ‘DS’ or ‘DBMS’, it can be done
as:

Select Name from Stud where SID IN (Select SID from Scourse where CID IN (Select
CID from Course where Cname = ‘DS’ or Cname = ‘DBMS’));

Q3. If we want to find out SIDs of STUDENTs who have neither enrolled in ‘DSA’ nor in ‘DBMS’,
it can be done as:
 Select Name from Stud where SID NOT IN (Select SID from Scourse where CID IN

 (Select CID from Course where Cname = ‘DS’ or Cname = ‘DBMS’));

3.5.2 Test for Empty Relations
SQL includes a feature for testing whether a subquery has any tuples in its result. The exists
construct returns the value true if the argument subquery is nonempty. We can test for the
nonexistence of tuples in a subquery by using the not exists construct

Q1. If we want to find out NAME of Student who are enrolled in CID ‘C1’

Select NAME from Stud where EXISTS(select * from Scourse where Stud.SID=Scourse.SID
and Scourse.CID=’C1’);

Correlated Query: With a normal nested subquery, the inner SELECT query runs first and
executes once, returning values to be used by the main query. A correlated subquery is a
subquery that uses values from the outer query.
Eg.SELECT employee_number, name FROM employees emp WHERE salary > (SELECT
AVG(salary) FROM employees WHERE department = emp.department);

3.5.3 Test for the Absence of Duplicate Tuples

Unique constraint in SQL is used to check whether the sub query has duplicate tuples in
it’s result. Unique construct returns true only if the sub query has no duplicate tuples, else it
return false. We can test for the existence of duplicate tuples in a subquery by using the not
unique construct.

Q1. Find course ID who enrolled in atleast one course?

SELECT Course.CID FROM Course WHERE UNIQUE (SELECT CID FROM Scourse where
Scourse.CID=Course.CID);

3.5.4 ALL
The ALL operator returns TRUE if all of the subqueries values meet the condition.

SELECT column-names FROM table-name WHERE column-name operator ALL
(SELECT column-name FROM table-name WHERE condition)

Q1. Returns the names, Rollno of students whose mark is greater than the mark of all the
students in department ec:

SELECT Name , SID FROM Stud WHERE Mark > ALL (SELECT Mark FROM Stud WHERE
Dept =ec);

3.6 Views(Virtual Table)
A view is a virtual table based on the result-set of an SQL statement. A view contains rows and
columns, just like a real table. The fields in a view are fields from one or more real tables in the
database. We can create a view by selecting fields from one or more tables present in the
database. A View can either have all the rows of a table or specific rows based on certain
condition. Views are a logical virtual table created by “select query” but the result is not stored

http://javarevisited.blogspot.sg/2011/10/selct-command-sql-query-example.html

anywhere in the disk and every time we need to fire the query when we need data, so always
we get updated or latest data from original tables.

SD SM

3.6.1 Creating Views
A View can be created from a single table or multiple tables.

CREATE VIEW view_name AS SELECT column1, column2..... FROM table_name WHERE
condition;

● Creating View from a single table:
 CREATE VIEW Details AS SELECT NAME, ADDRESS FROM SD WHERE S_ID < 5;

To see the data in the View, we can query the view in the same manner as we query a table.
 SELECT * FROM Details;

● Creating View from multiple tables:
 CREATE VIEW Marks AS
SELECT SD.NAME, SD.ADDRESS, SM.MARKS FROM SD, SM WHERE SD.NAME =

SM.NAME;

3.6.2 UPDATING VIEWS
A view can be updated under certain conditions which are given below −

● The SELECT clause may not contain the keyword DISTINCT.

● The SELECT clause may not contain summary functions.

● The SELECT clause may not contain set functions.

● The SELECT clause may not contain set operators.

● The SELECT clause may not contain an ORDER BY clause.

● The query may not contain GROUP BY or HAVING.

● Calculated columns may not be updated.

We can use the CREATE OR REPLACE VIEW statement to add or remove fields from a view.

CREATE OR REPLACE VIEW view_name AS SELECT column1,coulmn2,..FROM table_name

WHERE condition;

For example, if we want to update the view Marks and add the field AGE to this View from SM

Table, we can do this as:

CREATE OR REPLACE VIEW Marks AS SELECT SD.NAME, SD.ADDRESS,

SM.MARKS,SM.AGE FROM SD,SM WHERE SD.NAME = SM.NAME;

3.6.2.1 Inserting a row
INSERT INTO View name(C1,C2...Cn) VALUES(V1,V2….Vn);
 INSERT INTO Details(NAME, ADDRESS) VALUES("Suresh","Gurgaon");

3.6.2.2 DELETING Rows
Deleting rows from a view is also as simple as deleting rows from a table. We can use the
DELETE statement of SQL to delete rows from a view. Also deleting a row from a view first
delete the row from the actual table and the change is then reflected in the view.

DELETE FROM view_name WHERE condition;

DELETE FROM Details WHERE NAME="Suresh";

3.6.3 DELETING VIEWS
We can delete or drop a View using the DROP statement.

DROP VIEW view_name;

3.6.4 Materialized View

Materialized views are also the logical view of our data-driven by the select query but the result

of the query will get stored in the table or disk.

Materialized View vs View

View Materialized View

Views query result is not stored in the disk or
database

Materialized view allow to store the query
result in disk or table.

when we create a view using any table, rowid
of view is same as the original table

Materialized view rowid is different.

View we always get latest data Materialized view we need to refresh the
view for getting latest data.

Performance of View is less than Materialized
view.

Performance of Materialized View is higher
than view.

3.7 ASSERTION AND TRIGGER

A trigger is a statement or a block of statement which are executed automatically by the system

when an event like insert, update or delete takes place on a table.

A typical trigger has three components:

1. The event(s): These are usually database update operations that are explicitly applied to the

database.. The events are specified with two keyword BEFORE and AFTER. Before means that

the trigger should be executed before the triggering operation is executed. The keyword AFTER,

which specifies that the trigger should be executed after the operation specified in the event is

completed.

2. The condition that determines whether the rule action should be executed: Once the

triggering event has occurred, an optional condition may be evaluated. If no condition is

specified, the action will be executed once the event occurs. If a condition is specified, it is first

evaluated, and only if it evaluates to true will the rule action be executed. The condition is

specified in the WHEN clause of the trigger.

3. The action to be taken: The action is usually a sequence of SQL statements,but it could also

be a database transaction or an external program that will be automatically executed. In this

example, the action is to execute the stored

procedure INFORM_SUPERVISOR.

(CREATE/ REPLACE) TRIGGER trigger_name (BEFORE/ AFTER) INSERT | UPDATE | DELETE

ON table_name FOR EACH ROW WHEN(some_condition) DECLARE …..some_declarations…

CREATE TRIGGER SALARY BEFORE INSERT OR UPDATE OF SALARY ON EMPLOYEE FOR

EACH ROW WHEN (NEW.SALARY > (SELECT SALARY FROM EMPLOYEE WHERE SSN =

condition)

Assertions - An assertion is a piece of SQL which makes sure a condition is satisfied or it stops action

being taken on a database object. It could mean locking out the whole table or even the whole database.

CREATE ASSERTION name CHECK (NOT EXISTS (SELECT column name FROM table name

WHERE condition));

Trigger Assertion

executed automatically by the system when

an event like insert, update or delete takes

place on a table.

a piece of SQL which makes sure a condition is

satisfied or it stops action being taken on a

database object.

more powerful because the can check conditions
and also modify the data

do not modify the data, they only check certain
conditions.

Triggers are linked to specific tables and specific
events.

Assertions are not linked to specific tables in the
database and not linked to specific events.

