
Jisy Raju

Module 5
Physical Data Organization: index structures, primary, secondary and clustering
indices, Single level and Multi-level indexing, B+Trees (basic structure only,
algorithms not needed), Query Optimization:heuristics-based query optimization,

5.1 Physical Data Organization
There are two types of storage devices used with computers: a primary storage device,,
and a secondary storage device

● Primary storage devices: Generally smaller in size, these are designed to hold
data temporarily and are internal to the computer. They have the fastest data
access speed, and include RAM and cache memory.

● Secondary storage devices: These usually have large storage capacity, and they
store data permanently. They can be either internal or external to the computer,
and they include the hard disk, optical disk drive and USB storage device.

Relative data and information is stored collectively in file formats. The File is a collection
of records. A file can contain:

● Fixed-length records - all the records are exactly the same length
● Variable-length records - the length of each record varies

Using variable-length records might enable you to save disk space. When you use
Fixed-length records, you need to make the record length equal to the length of the
longest record.

A file is a sequence of records stored in binary format. A disk drive is formatted into

several blocks that can store records. File records are mapped onto those disk blocks.
Blocking factor is the number of records in a block at a particular time.

Blocking factor = floored((Block size)/(Record size))
Block size is larger than the record size.
Assume We have 10 000 000 records. Each record is 80 bytes long and block size is 5000 0
then find number of blocks need to store all records,
 Blocking factor= Floor((5000/80))
 = Floor(62.5)
 = 62 ie. 62 records
And we have 10000000 records, so we need
ceiled(10000000/62)=ceiled(161290.32)=161291 blocks to store all that data.

Spanned record and unspanned records
A part of record will get stored on one block and remaining on some other disk block. In such a case
there will be a pointer at the end of the disk block that will point to the next block. Such a organization
is called Spanned. If Records are not allowed to cross block boundaries we call them unspanned.

https://www.computerhope.com/jargon/p/primstor.htm
https://www.computerhope.com/jargon/p/primstor.htm
https://www.computerhope.com/jargon/s/secostor.htm
https://www.computerhope.com/jargon/s/secostor.htm

File Allocation Methods

The allocation methods define how the files are stored in the disk blocks. There are three

main disk space or file allocation methods.

● Contiguous Allocation: file occupies a contiguous set of blocks on the disk.This

method suffers from both internal and external fragmentation.

● Linked Allocation: ach file is a linked list of disk blocks which need not be

contiguous. The disk blocks can be scattered anywhere on the disk. Each block

contains a pointer to the next block occupied by the file.

● Indexed Allocation: a special block known as the Index block contains the pointers

to all the blocks occupied by a file. Each file has its own index block.

5.1.1 File Organization: The DB is stored as a collection of files. Each files is a

sequence of records. A record is a sequence of field. If every record in a file has same

size, then file is said to be fixed length record. If every record in a file has different size,

then file is said to be variable length record. File Organization are based on sorted and

unsorted records.

5.1.1.1 Files of Unordered Records (Heap Files)

In this simplest and most basic type of organization, records are placed in the file in the

order in which they are inserted, so new records are inserted at the end of the file. Such

an organization is called a heap or pile file. There is no sorting or ordering of the records.

Once the data block is full, the next record is stored in the new block. This new block

need not be the very next block. This method can select any block in the memory to store

the new records. When a record has to be retrieved from the database, in this method,

we need to traverse from the beginning of the file till we get the requested record (linear

search). To delete a record, a program must first find its block, copy the block into a

buffer, delete the record from the buffer, and finally rewrite the block back to the disk.

This leaves unused space in the disk block. Deleting a large number of records in this

way results in wasted storage space. The deletion techniques require periodic

reorganization of the file to reclaim the unused space of deleted records.

5.1.1.2 Files of Ordered Records (Sorted Files)

Sorting is based on a key field. Insertion and deletion operation is expensive.

To insert and delete we have to find the exact block of records. First the

record is placed in the overflow file which is unordered. Then at the time of

reorganisation, records are sorted and copy to the master file. For selection,

both linear search and binary search are used. Linear search in overflow file

and binary search in master file.

5.1.2 Hashing

Hashing is an effective technique to calculate the direct location of a data

record on the disk without using index structure. Data is stored at the data

blocks whose address is generated by using hash function.

5.2 Index structures
An index is a data structure which is used to quickly locate and access the

data in a database table.

Type of Index

● Single level index

● Multi level index

5.2.1 Single level index:

An index is a small table having only two columns. The first column contains

search key of a table and the second column contains a set of pointers

holding the address of the disk block where that particular key value can be

found.

The values in the index are ordered, so we can do a binary search on the

index. The index file is much smaller than the data file, so the binary search

is much faster.

Search Key Pointer

There are different types of indexes, these include:

● Primary Indexes

● Clustering index

● Secondary index

Primary Index: Primary index is defined on an ordered data file. The data

file is ordered on a key field. The key field is generally the primary key of the

relation. Primary index is created automatically when the table is created in

the DB.

There are two types of primary index,

● Dense index

● Sparse Index

Dense Index

In dense index, there is an index record for every search key value in the
database. This makes searching faster but requires more space to store
index records itself. Index records contain search key value and a pointer to
the actual record on the disk.

Sparse Index

Index records are created only for some of the search key.

● To locate a record, we find the index record with search key value less than or

equal to the search key value we are looking for.

● We start at that record pointed to by the index record, and proceed along the

pointers in the file (that is, sequentially) until we find the desired record.

Secondary Index: Index table is generally kept in primary memory and its

entire contents are placed in secondary memory. Primary memory contain

sparse index and secondary memory contain two indexes (1 sparse index, 1

actual table)

Clustered Index:Clustered indexes are efficient on columns that are

searched for a range of values. Primary memory contain index of clustered

group which point to actual data in secondary. Here 2 in primary memory

pointed to the secondary memory. If cluster two is ended in same block then

the block pointer set to be null. In the case of cluster 3, it spanned to the

next block then the block pointer point to the next block.

MULTILEVEL INDEX

● If the primary index does not fit in the memory access become expensive.

● To reduce the number of disk accesses to index records, treat primary index kept

on the disk as sequential file and construct a sparse index on it.

▪ Outer index – A sparse index of primary index.

▪ Inner index – The primary index file.

● If even outer index is too large to fit in main memory, yet another level of index

can be created.

● Indices from all levels must be updated on insertion or deletion from the file.

● Insertion and deletion are complicated because all index files at different levels

are ordered files.

● One solution to this problem is to keep some space reserved in each block for

new entries.

● The outer index is the first level sparse index.

● The inner index is the second level sparse index.

● In order to search for an index, one can first apply binary search on the second

level index to find the largest value which is less than or equal to the search key.

● The pointer corresponding to this value points to the block of the first level

index that contains an entry for the search record.

● This block level index is searched to locate the largest value which is less than or

equal to the search key.

● The pointer corresponding to this block directs us to the block that contains the

required content.

If the second level index is too small to fit in main memory at once, fewer

blocks of index file needs to be accessed from the disk to locate a

particular record.

However if the second level is too large to fit in the main memory at once,

another level of index can be created.

This process of creating index on index can be repeated until the size of

the index become small enough to fit in the main memory.This type of index with multiple

levels of index is called “MULTILEVEL

INDEX”.

5.3 B+Tree
B+ Tree is an extension of B Tree which allows efficient insertion, deletion and search

operations. In B Tree, Keys and records both can be stored in the internal as well as leaf

nodes. Whereas, in B+ tree, records (data) can only be stored on the leaf nodes while

internal nodes can only store the key values. The leaf nodes of a B+ tree are linked

together in the form of a singly linked lists to make the search queries more efficient. B+

Tree are used to store the large amount of data which can not be stored in the main

memory. Due to the fact that, size of main memory is always limited, the internal nodes

(keys to access records) of the B+ tree are stored in the main memory whereas, leaf

nodes are stored in the secondary memory. The internal nodes of B+ tree are often called

index nodes.

For example, B+Tree of Order 4 contains a maximum of 3 key values in a node, minimum
key 1 and maximum of 4 children for a node.

● Property #1 - All leaf nodes must be at same level.

● Property #2 - All nodes except root must have at least [m/2]-1 keys and maximum

of m-1 keys in the case of order.

● Incase of degree t minimum key is t-1 and maximum key is 2t-1

● Property #3 - All non leaf nodes except root (i.e. all internal nodes) must have at

least m/2 children.

● Property #4 - If the root node is a non leaf node, then it must have atleast 2

children.

● Property #5 - A non leaf node with n-1 keys must have n number of children.

● Property #6 - All the key values in a node must be in Ascending Order.

Btree

B+ Tree

B Tree VS B+ Tree

B Tree B+ Tree

Search keys can not be repeatedly stored. Redundant search keys can be present.

Data can be stored in leaf nodes as well as

internal nodes

Data can only be stored on the leaf nodes.

Searching for some data is a slower process Searching is comparatively faster

Deletion of internal nodes are so complicated and

time consuming.

Deletion will never be a complexed process since

element will always be deleted from the leaf

nodes.

Leaf nodes can not be linked together. Leaf nodes are linked together to make the search

operations more efficient.

This image is not a btree or either b+ tree because its all nodes aren’t in same level

 5.4 Query Optimization
Query: A query is a request for information from a database.

Query Plans: A query plan (or query execution plan) is an ordered set of steps used to

access data in a SQL relational database management system.

Query Processing:Query Processing is a translation of high-level queries into low-level

expression.

The user typically writes his requests in SQL language. In order to process and execute

this request, DBMS has to convert it into low level – machine understandable language.

Step 1: Any query issued to the database is first picked by query processor. It scans and

parses the query into individual tokens and examines for the correctness of query. It

checks for the validity of tables / views used and the syntax of the query.

Step 2: convert Sql to relational algebra in different forms and structures.

Step 3: Create query tree or execution plan. In order to transform a given query into a

query tree, the query is decomposed into query block (nested query)

Step 4: Query execution

Step 5: Result

query processing is done with the following aim −

● Minimization of response time of query

● Maximize system throughput

● Reduce the amount of memory and storage required for processing.

● Increase parallelism.

Query Optimization: A single query can be executed through different algorithms or

re-written in different forms and structures. The query optimizer attempts to determine the

most efficient way to execute a given query by considering the possible query plans.

Importance: The goal of query optimization is to reduce the system resources required to

fulfill a query, and ultimately provide the user with the correct result set faster.

In Query Optimization, first translate given query to relational algebra and create a

query tree.

Q1. SELECT Ename FROM Employee WHERE Salary > 5000;

 Translated into Relational Algebra Expression

 σ Salary > 5000 (π Ename (Employee))

 OR

 π Ename (σ Salary > 5000 (Employee))

Q2. SELECT STD_ID, STD_NAME, ADDRESS, DOB FROM STUDENT s, CLASS c

 WHERE s.CLASS_ID = c.CLASS_ID AND c.CLASS_NAME = ‘DESIGN_01’;

∏ STD_ID, STD_NAME, ADDRESS, DOB (σ CLASS_NAME = ‘DESIGN_01’ (STUDENT ⋈

CLASS))

 OR

σ CLASS_NAME = ‘DESIGN_01’ (∏ STD_ID, STD_NAME, ADDRESS, DOB (STUDENT

⋈CLASS))

Q3. SELECT LNAME, FNAME FROM EMPLOYEE WHERE SALARY > (SELECT MAX

(SALARY) FROM EMPLOYEE WHERE DNO = 5)

∏ LNAME, FNAME(σ SALARY>C (EMPLOYEE)) ∏ MAX(SALARY)(σ DNO=5 (EMPLOYEE))

Q4. π EmpID(σEName="ArunKumar"(EMPLOYEE))

Approaches to Query Optimization

Among the approaches for query optimization, exhaustive search and heuristics-based

algorithms are mostly used.

Heuristics-based algorithms

This method is also known as rule based optimization. This is based on the equivalence rule

on relational expressions; hence the number of combination of queries get reduces here.

Hence the cost of the query too reduces. This method creates relational tree for the given

query based on the equivalence rules. These equivalence rules by providing an

alternative way of writing and evaluating the query, gives the better path to evaluate the

query.

● Perform all the selection operation as early as possible in the query.

● Perform all the projection as early as possible in the query.

● Next step is to perform most restrictive joins and selection operations.

Suppose we have a query to retrieve the students with age 18 and studying in class

DESIGN_01. We can get all the student details from STUDENT table, and class details

from CLASS table. We can write this query in two different ways.

Here both the queries will return same result. But when we observe them closely we can

see that first query will join the two tables first and then applies the filters. That means, it

traverses whole table to join, hence the number of records involved is more. But he

second query, applies the filters on each table first. This reduces the number of records

on each table (in class table, the number of record reduces to one in this case!). Then it

joins these intermediary tables. Hence the cost in this case is comparatively less.

