

Data Flow Analysis

1

Data Flow Analysis
Data flow analysis is used to collect information about the flow of data values across basic blocks.
· Dominator analysis collected global information regarding the program’s structure
· For performing global code optimizations global information must be collected regarding values of program variables.
· Local optimizations involve statements from same basic block
· Global optimizations involve statements from different basic blocks  data flow analysis is performed to collect global information that drives global optimizations

2

 	Local and Global Optimization	

Applications of Data Flow Analysis
· Applicability of code optimizations
· Symbolic debugging of code
· Static error checking
· Type inference
· …….

3	4

1. Reaching Definitions	Example

Definition d of variable v: a statement d that assigns a value to v.
Use of variable v: reference to value of v in an expression evaluation.

Definition d of variable v reaches a point p if there exists a path from immediately after d to p such that definition d is not killed along the path.
Definition d is killed along a path between two points if there exists an assignment to variable v along the path.

5

d reaches u along path2 & d does not reach u along path1
Since there exists a path from d to u along which d is not killed (i.e., path2), d reaches u.
6

Reaching Definitions Contd.
Unambiguous Definition: X = ….;
Ambiguous Definition: *p = ….; p may point to X

For computing reaching definitions, typically we only consider kills by unambiguous definitions.

Computing Reaching Definitions
At each program point p, we compute the set of definitions that reach point p.
Reaching definitions are computed by solving a system of equations (data flow equations).

d2: X=…	d3: X=…

X=..
*p=..
Does definition of X reach here ?	Yes

IN[B]
OUT[B]

d1: X=…

GEN[B] ={d1}
KILL[B]={d2,d3}

7	8

Data Flow Equations

IN[B]: Definitions that reach B’s entry. OUT[B]: Definitions that reach B’s exit.

GEN[B]: Definitions within B that reach the end of B.
KILL[B]: Definitions that never reach the end of B due to redefinitions of variables in B.

Reaching Definitions Contd.
· Forward problem – information flows forward in the direction of edges.
· May problem – there is a path along which definition reaches a point but it does not always reach the point.
Therefore in a May problem the meet operator is the Union operator.

9

Applications of Reaching

10

2. Available Expressions

 	Definitions	
· Constant Propagation/folding

· Copy Propagation

An expression is generated at a point if it is computed at that point.
An expression is killed by redefinitions of operands of the expression.

An expression A+B is available at a point if every path from the start node to the point evaluates A+B and after the last evaluation of A+B on each path there is no redefinition of either A or B (i.e., A+B is not killed).

11	12

Available Expressions	Data Flow Equations

IN[B]: Expressions available at B’s entry. OUT[B]: Expressions available at B’s exit.

Available expressions problem computes: at each program point the set of expressions available at that point.

13

GEN[B]: Expressions computed within B that are available at the end of B.
KILL[B]: Expressions whose operands are redefined in B.

14

Available Expressions Contd.
· Forward problem – information flows forward in the direction of edges.
· Must problem – expression is definitely available at a point along all paths.
Therefore in a Must problem the meet operator is the Intersection operator.
· Application:
3.
Live Variable Analysis
A path is X-clear is it contains no definition of X. A variable X is live at point p if there exists a X- clear path from p to a use of X; otherwise X is
dead at p.
Live Variable Analysis Computes:
At each program point p identify the set of variables that are live at p.

 (
A
)15	16

Data Flow Equations

IN[B]: Variables live at B’s entry. OUT[B]: Variables live at B’s exit.

GEN[B]: Variables that are used in B prior to their definition in B.
KILL[B]: Variables definitely assigned value in B before any use of that variable in B.

Live Variables Contd.
· Backward problem – information flows backward in reverse of the direction of edges.
· May problem – there exists a path along which a use is encountered.
Therefore in a May problem the meet operator is the Union operator.

17	18

Applications of Live Variables	4. Very Busy Expressions

· Register Allocation

· Dead Code Elimination

A expression A+B is very busy at point p if for all paths starting at p and ending at the end of the program, an evaluation of A+B appears before any definition of A or B.
Application:
Code Size Reduction

· (
19
)Code Motion Out of Loops

 (
20
)Compute for each program point the set of very busy expressions at the point.

Data Flow Equations

IN[B]: Expressions very busy at B’s entry. OUT[B]: Expressions very busy at B’s exit.

GEN[B]: Expression computed in B and variables used in the expression are not redefined in B prior to expression’s evaluation in B.
KILL[B]: Expressions that use variables that are

Very Busy Expressions Contd.
· Backward problem – information flows backward in reverse of the direction of edges.
· Must problem – expressions must be computed along all paths.
Therefore in a Must problem the meet operator is the Intersection operator.

redefined in B.	21	22
Summary	Conservative Analysis

 (
May/Union
) (
Must/
Intersecti
)

 (
on
)
Forward	Reaching	Available
 (
Live Variables
)Definitions	Expressions

 (
Backward
)	 (
Very Busy Expressions
)

Optimizations that we apply must be Safe => the data flow facts we compute should definitely be true (not simply possibly true).
Two main reasons that cause results of analysis to be conservative:
1. Control Flow
2. Pointers & Aliasing

23	24

Conservative Analysis	Conservative Analysis

1. Control Flow – we assume that all paths are executable; however, some may be infeasible.

X+Y is always available if w exclude infeasible paths.

25
2.
Pointers & Aliasing – we may not know what a pointer points to.
1. X = 5
2. *p = …	// p may or may not point to X 3. … = X

Constant propagation: assume p does point to X (i.e., in statement 3, X cannot be replaced by 5). Dead Code Elimination: assume p does not point to
X (i.e., statement 1 cannot be deleted).

26

Representation of Data Flow Sets	Solving Data Flow Equations

· Bit vectors – used to represent sets because we are computing binary information.
· Does a definition reach a point ? T or F
· Is an expression available/very busy ? T or F
· Is a variable live ? T or F
· For each expression, variable, definition we have one bit – intersection and union operations can be implemented using bitwise and & or operations.

27	28

Solving Data Flow Equations	Solving Data Flow Equations

29	30

Use-Def & Def-Use Chains

Sample Problems Data Flow Analysis

31	32

Data Flow Analysis
Formulate data flow equations for computing the following information:

1. Postdominators -- postdominator set of a node is the set of nodes that are encountered along all paths from the node to the end node of the control flow graph. This information is used for computing control dependence.

33

2. Reachable uses -- for each definition identify the set of uses reachable by the definition. This information is used for computing
def-use chains.
3. Reaching uses -- given a definition of variable x, identify the set of uses of x that are encountered prior to reaching the definition and there is no other definitions of x that intervene the use and the definition. This information is used for
computing antidependences.
34

4. Classify Variable Values -- classify the value of each program variable at each program point into one of the following categories: (a) the value is a unique constant -- you must also identify this constant value; (b) the value is one-of-many constants – you do not have to compute the identities of these constants as part of your solution; and (c) the value is not-a-constant, that is, it is neither a unique constant nor a one-of-many constants. This is a generalization of constant propagation.
35
image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png
ouT(8) = Genes) U (NGB~ KIL(B))

image14.png

image15.png

image16.png

image17.png

image18.png
l,\lg A+B @

A

Mot avarlakde

image19.png
IN[8) = N our(r)
P € preed(8)
OUTCRT = Genpat U (INEED - KILLEED)

image20.png
[x=at8] [v=a+8
AtB IS ,‘Sr____/
availese here L Z= A48

image21.png
o X ishwe
(2.
En,__x \¢ deadd

image22.png
Read(x)
—_‘4 x5 hve

image23.png

image24.png
auvrrrel-) IN[s]

image25.png
§€ Suerny

image26.png
IN[B)- GEnig) U ((0UT(B]-KILLLED)

image27.png
J Ao X decd
Yempve the Hatement

image28.png
X isc

image29.png
e~ A+ B 15 Ot VeTY by

image30.png
T=2:3]

image31.png

image32.png
PER

image33.png
ouTR]= [/ IN[s)

image34.png
SeSut(z)

image35.png
N[l = Gen(sl U (our[B) - KILLLET)

image36.png

image37.png

image38.png
Ttembve fppocch
< inihelize s
+ tertte oves the Sebs il they vablige

Eample Foncird problem (Avaibble Bxpressions)

IN(BJ:g, ouT(s,)- GEn[A]
For e=i 4N do OUT(B]= {anespresmiomsly —MILLIBL]
chenge - sk
whle henge du
L?vrﬂ: = falee.
§ eceh blok B #8s do
oLdovr = cWF 8]
wisl= () oor(¥]
e pal(B)
our(e]=Gengs) U L N1~ ani(5))
IF OUT 6]+ oLBOVT Hhén Choge = hed
e for
e

image39.png
(1= start with lasgait eipmate 4 elerahiey shonk e

Ssolatron +iAL b Stabaligas

image40.png
Ttewdive Approath

Example hockusind problem (1ive vorabies)

fo 42110 N do N[B1: GENTE]
Ul 1=
chonge - b
while hange clo
Chinge falie
fev each bivex & do
o - ings]
sur(s1 U nis)
<erucen
INR1- Gewgs) U (ourts] - K (1)

I 0LDIN 7 in[a] Hhen Chonge = it
end for
endwiile

U- Sttt smabest slution 4 keep eaporcting 1
 Stpe enpareting

image41.png
Alternchive Appwaih WeorkLit ARgmmimt

Example - boctranrd provlern (BT expressiont)
forziton do NS,)+ { Anenpuecienty — ke TB)
T (8,,,): 4

Wortat - At blecks

hile oiUrt £ g oo
et B from worktirt

Shert with 1ge folwbea &
Keep stanbng bl 1 siops

Shrink
Loy -inge) v
ourad= () INGY

sesuegsy

INGa2= Gene) v Coures) - ki te))
SE oI £ 1n (6] +htn

A Pred (8) to worltist
endunte

image42.png
Dacctly ok witruchuns 4hos prouce velucr wilh 0redis

et tmme values

use=cef

U eheans for Seme veneble
e w0 ke Rt) peinkért
to it dlefnbons of Hhe
voniable +hed Teoth U

s i- Proan
s |, MLM\"}:‘Q

veching duflins

P ——
Gepontn 5 e Lt ks
1o oll wrec of the vomabie
thot aur veeUshlt fomd

du(a e 15k 1)
_/ 1)) vour’ (8)
g E
e
(Slignt caegtanm]
Live vonies)

image1.png

image2.png

image3.png

image4.png

image5.png

