

PREPARED BY: PRAMOD MATHEW JACOB
11
5

SOFTWARE ENGINEERING

13. SOFTWARE PROJECT MANAGEMENT
A system of management procedures, practices, technologies, skills, and experience necessary to

successfully manage a software project

 The main goal of software project management is to enable a group of software developers to work

efficiently towards successful completion of the project.

 The entire SPM consist of five phases: Planning, Staffing, Organizing, Controlling & Directing.

PLANNING
 It is the basic function of management. It deals with chalking out a future course of action & deciding

in advance the most appropriate course of actions for achievement of pre-determined goals.

 Planning is deciding in advance - what to do, when to do & how to do. It bridges the gap from where

we are & where we want to be”.

 A plan is a future course of actions. It is an exercise in problem solving & decision making.

 Planning is determination of courses of action to achieve desired goals. Thus, planning is a systematic

thinking about ways & means for accomplishment of pre-determined goals.

Planning activities

 Set objectives and goals

 Develop strategies

 Develop policies

 Forecast future situations

 Conduct a risk assessment

 Determine possible courses of action

 Make planning decisions

 Set procedures and rules

 Develop project plans

 Prepare budgets

 Document project plans

PREPARED BY: PRAMOD MATHEW JACOB
11
6

SOFTWARE ENGINEERING

ORGANIZING
 It is the process of bringing together physical, financial and human resources and developing

productive relationship amongst them for achievement of organizational goals.

 To organize a business is to provide it with everything useful or its functioning i.e. raw material, tools,

capital and personnel’s.

 To organize a business involves determining & providing human and non-human resources to the

organizational structure.

Organizing activities

 Identify and group project function, activities, and tasks

 Select organizational structures

 Create organizational positions

 Define responsibilities and authority

 Establish position qualifications

 Document organizational decisions

STAFFING
 It is the function of manning the organization structure and keeping it manned.

 Staffing has assumed greater importance in the recent years due to advancement of technology,

increase in size of business, complexity of human behavior etc.

 The main purpose of staffing is to put right man on right job.

 Managerial function of staffing involves manning the organization structure through proper and

effective selection, appraisal & development of personnel to fill the roles designed under the structure.

Staffing activities

 Fill organizational positions

 Assimilate newly assigned personnel

 Educate or train personnel

 Provide for general development

 Evaluate and appraise personnel

 Compensate

 Terminate assignments

 Document staffing decisions

DIRECTING

 It is that part of managerial function which actuates the organizational methods to work efficiently for

achievement of organizational purposes.

 It is considered life-spark of the enterprise which sets it in motion the action of people because

planning, organizing and staffing are the mere preparations for doing the work.

 Direction is that inert-personnel aspect of management which deals directly with influencing, guiding,

supervising, motivating sub-ordinate for the achievement of organizational goals.

 Direction has following elements:

PREPARED BY: PRAMOD MATHEW JACOB
11
7

SOFTWARE ENGINEERING

Supervision- implies overseeing the work of subordinates by their superiors. It is the act of watching &

directing work & workers.

Motivation- means inspiring, stimulating or encouraging the sub-ordinates with zeal to work. Positive,

negative, monetary, non-monetary incentives may be used for this purpose.

Leadership- may be defined as a process by which manager guides and influences the work of subordinates

in desired direction.

Communications- is the process of passing information, experience, opinion etc from one person to another.

It is a bridge of understanding.

Directing activities

 Provide leadership

 Supervise personnel

 Delegate authority

 Motivate personnel

 Build teams

 Coordinate activities

 Facilitate communication

 Resolve conflicts

 Manage changes

 Document directing decisions

CONTROLLING

 It implies measurement of accomplishment against the standards and correction of deviation if any to

ensure achievement of organizational goals.

 The purpose of controlling is to ensure that everything occurs in conformities with the standards. An

efficient system of control helps to predict deviations before they actually occur.

 Controlling is the process of checking whether or not proper progress is being made towards the

objectives and goals and acting if necessary, to correct any deviation

 Controlling is the measurement & correction of performance activities of subordinates in order to make

sure that the enterprise objectives and plans desired to obtain them as being accomplished.

Controlling activities

 Develop standards of performance

 Establish monitoring and reporting systems

 Measure and analyze results

 Initiate corrective actions

 Reward and discipline

 Document controlling methods

PREPARED BY: PRAMOD MATHEW JACOB
11
8

SOFTWARE ENGINEERING

ORGANIZATION STRUCTURES

 Usually every software development organization handles several projects at any time. Software

organizations assign different teams of engineers to handle different software projects.

 There are essentially two broad ways in which a software development organization can be

structured: functional format and project format.

PROJECT FORMAT

 In the project format, the project development staff are divided based on the project for which

they work as shown below.

Figure: Project Organization

 In the project format, a set of engineers is assigned to the project at the start of the project and they

remain with the project till the completion of the project. Thus, the same team carries out all the life

cycle activities.

 A project organization structure forces the manager to take in almost a constant number of engineers

for the entire duration of his project. This results in engineers idling in the initial phase of the software

development and are under tremendous pressure in the later phase of the development.

 The project format provides job rotation to the team members. That is, each team member takes on the

role of the designer, coder, tester, etc during the course of the project. So a team member can fill any

slots in the development team.

 In project format, each individual team consist of a representative to do various SDLC phases like

analysis, design, coding, testing, architecture design, reviewer etc.

 Though each member is aware about various SDLC activities, it is easy to rotate the roles of team

members.

 The team members can improve their knowledge and skills in every domains of SDLC.

PREPARED BY: PRAMOD MATHEW JACOB
11
9

SOFTWARE ENGINEERING

FUNCTIONAL FORMAT

 In the functional format, the development staff are divided based on the functional group to which

they belong. The different projects borrow engineers from the required functional groups for

specific phases to be undertaken in the project and return them to the functional group upon the

completion of the phase.

Figure: Functional Organization

 In the functional format, different teams of programmers perform different phases of a project.

For example, one team might do the requirements specification, another do the design, and so

on. The partially completed product passes from one team to another as the project evolves.

Therefore, the functional format requires considerable communication among the different teams

because the work of one team must be clearly understood by the subsequent teams working on

the project. This requires good quality documentation to be produced after every activity.

 The main advantages of a functional organization are:

• Ease of staffing

• Production of good quality documents

• Job specialization

• Efficient handling of the problems associated with manpower turnover.

 The functional format requires more communication among teams than the project format,

because one team must understand the work done by the previous teams.

 The functional organization allows the engineers to become specialists in particular roles, e.g.

requirements analysis, design, coding, testing, maintenance, etc. They perform these roles again

and again for different projects and develop deep insights to their work.

PREPARED BY: PRAMOD MATHEW JACOB
12
0

SOFTWARE ENGINEERING

 It also results in more attention being paid to proper documentation at the end of a phase because

of the greater need for clear communication as between teams doing different phases. The

functional organization also provides an efficient solution to the staffing problem.

 The project staffing problem is eased significantly because personnel can be brought onto a

project as needed, and returned to the functional group when they are no more needed. This

possibly is the most important advantage of the functional organization.

 Functional format is not suitable for small organizations handling just one or two projects.

 Another problem with the functional organization is that if an organization handles projects

requiring knowledge of specialized domain areas, then these domain experts cannot be brought

in and out of the project for the different phases, unless the company handles a large number of

such projects.

TEAM STRUCTURE

 Team structure addresses the issue of organization of the individual project teams. There are some

possible ways in which the individual project teams can be organized.

 There are mainly three formal team structures: chief programmer, democratic, and the mixed team

organization.

1. Chief Programmer Team

 In this team organization, a senior engineer provides the technical leadership and is designated

as the chief programmer. The chief programmer partitions the task into small activities and

assigns them to the team members. He also verifies and integrates the products developed by

different team members.

 The structure of the chief programmer team is shown below.

 The chief programmer provides an authority, and this structure is arguably more efficient than

the democratic team for well-understood problems. However, the chief programmer team leads

to lower team morale, since team-members work under the constant supervision of the chief

programmer. This also inhibits their original thinking.

 The chief programmer team is subject to single point failure since too much responsibility and

authority is assigned to the chief programmer.

Figure: Chief programmer team structure

PREPARED BY: PRAMOD MATHEW JACOB
12
1

SOFTWARE ENGINEERING

 The chief programmer team is probably the most efficient way of completing simple and small

projects since the chief programmer can work out a satisfactory design and ask the programmers

to code different modules of his design solution.

 For simple and well-understood problems, an organization must be selective in adopting the chief

programmer structure.

 The chief programmer team structure should not be used unless the importance of early project

completion outweighs other factors such as team morale, personal developments, life-cycle cost

etc.

2. Democratic Team

 The democratic team structure, as the name implies, does not enforce any formal team hierarchy.

Typically, a manager provides the administrative leadership. At different times, different

members of the group provide technical leadership.

 Figure: Democratic team structure

 The democratic organization leads to higher morale and job satisfaction. Consequently, it suffers

from less man-power turnover.

 Democratic team structure is appropriate for less understood problems, since a group of engineers

can invent better solutions than a single individual as in a chief programmer team.

 A democratic team structure is suitable for projects requiring less than five or six engineers and

for research-oriented projects. For large sized projects, a pure democratic organization tends to

become chaotic.

 The democratic team organization encourages egoless programming as programmers can share

and review one another’s work.

PREPARED BY: PRAMOD MATHEW JACOB
12
2

SOFTWARE ENGINEERING

3. Mixed Control Team Organization

 The mixed team organization, as the name implies, draws upon the ideas from both the

democratic organization and the chief-programmer organization.

 The mixed control team organization is suitable for large team sizes. The democratic arrangement

at the senior engineer’s level is used to decompose the problem into small parts. Each democratic

setup at the programmer level attempts solution to a single part. Thus, this team organization is

eminently suited to handle large and complex programs.

 This team structure is extremely popular and is being used in many software development

companies.

 The mixed control team organization is shown below. This team organization incorporates both

hierarchical reporting and democratic set up. In figure, the democratic connections are shown as

dashed lines and the reporting structure is shown using solid arrows.

Figure: Mixed team structure

CHARACTERISTICS OF A GOOD SOFTWARE ENGINEER

The attributes that good software engineers should possess are as follows:

• Exposure to systematic techniques, i.e. familiarity with software engineering principles.

• Good technical knowledge of the project areas (Domain knowledge).

• Good programming abilities.

• Good communication skills. These skills comprise of oral, written, and interpersonal skills.

• High motivation.

• Sound knowledge of fundamentals of computer science.

• Intelligence.

• Ability to work in a team.

• Discipline, etc.

PREPARED BY: PRAMOD MATHEW JACOB
12
3

SOFTWARE ENGINEERING

14. SOFTWARE PROJECT COST ESTIMATION & PROJECT SCHEDULING

COST ESTIMATION
Cost estimation can be defined as the approximate judgement of the costs for a project.

 Cost estimation is usually measured in terms of effort. The most common metric used is person months

or years (or man months or years). The effort is the amount of time for one person to work for a certain

period of time.

 A cost estimate done at the beginning of a project will help determine which features can be included

within the resource constraints of the project (e.g., time). Requirements can be prioritized to ensure

that the most important features are included in the product. The risk of a project is reduced when the

most important features are included at the beginning because the complexity of a project increases

with its size, which means there is more opportunity for mistakes as development progresses. Thus,

cost estimation can have a big impact on the life cycle and schedule for a project.

 Cost estimation can also have an important effect on resource allocation. It is prudent for a company

to allocate better resources, such as more experienced personnel, to costly projects.

Metrics for software project size estimation

 Accurate estimation of the problem size is fundamental to satisfactory estimation of effort, time

duration and cost of a software project. In order to be able to accurately estimate the project size,

some important metrics should be defined in terms of which the project size can be expressed.

 Currently two metrics are popularly being used widely to estimate size: lines of code (LOC) and

function point (FP). The usage of each of these metrics in project size estimation has its own

advantages and disadvantages.

1. Lines of Code (LOC)

 LOC is the simplest and most widely used metric to estimate project size. The project size is

estimated by counting the number of source instructions in the developed program. Lines used

for commenting the code and the header lines should be ignored.

 Determining the LOC count at the end of a project is a very simple job. However, accurate

estimation of the LOC count at the beginning of a project is very difficult. In order to estimate

the LOC count at the beginning of a project, project managers usually divide the problem into

modules, and each module into sub modules and so on, until the sizes of the different leaf-

level modules can be approximately predicted. To be able to do this, past experience in

developing similar products is helpful. By using the estimation of the lowest level modules,

project managers arrive at the total size estimation.

LOC as a measure of problem size has several shortcomings:

 LOC gives a numerical value of problem size that can vary widely with individual coding style

– different programmers lay out their code in different ways.

 A good problem size measure should consider the overall complexity of the problem and the

effort needed to solve it. That is, it should consider the local effort needed to specify, design,

code, test, etc. and not just the coding effort. LOC, however, focuses on the coding activity alone;

it merely computes the number of source lines in the final program.

PREPARED BY: PRAMOD MATHEW JACOB
12
4

SOFTWARE ENGINEERING

 LOC measure correlates poorly with the quality and efficiency of the code. Larger code size does

not necessarily imply better quality or higher efficiency. Some programmers produce lengthy

and complicated code as they do not make effective use of the available instruction set.

 LOC metric penalizes use of higher-level programming languages, code reuse, etc. The paradox

is that if a programmer consciously uses several library routines, then the LOC count will be

lower. This would show up as smaller program size. Thus, if managers use the LOC count as a

measure of the effort put in the different engineers (that is, productivity), they would be

discouraging code reuse by engineers.

 LOC metric measures the lexical complexity of a program and does not address the more

important but subtle issues of logical or structural complexities. Between two programs with

equal LOC count, a program having complex logic would require much more effort to develop

than a program with very simple logic

 It is very difficult to accurately estimate LOC in the final product from the problem specification.

The LOC count can be accurately computed only after the code has been fully developed.

2. Function point (FP)

 Function point metric was proposed by Albrecht [1983]. This metric overcomes many of

the shortcomings of the LOC metric. One of the important advantages of using the

function point metric is that it can be used to easily estimate the size of a software product

directly from the problem specification. This is in contrast to the LOC metric, where the

size can be accurately determined only after the product has fully been developed.

 The conceptual idea behind the function point metric is that the size of a software product

is directly dependent on the number of different functions or features it supports. A

software product supporting many features would certainly be of larger size than a

product with less number of features. Each function when invoked reads some input data

and transforms it to the corresponding output data.

 For example, the issue book feature (as shown in below figure) of a Library Automation

Software takes the name of the book as input and displays its location and the number of

copies available. Thus, a computation of the number of input and the output data values

to a system gives some indication of the number of functions supported by the system.

Albrecht postulated that in addition to the number of basic functions that a software

performs, the size is also dependent on the number of files and the number of interfaces.

 Figure: System function as a map of input data to output data

PREPARED BY: PRAMOD MATHEW JACOB
12
5

SOFTWARE ENGINEERING

Besides using the number of input and output data values, function point metric computes the size of a

software product (in units of functions points or FPs) using three other characteristics of the product as

shown in the following expression. The size of a product in function points (FP) can be expressed as the

weighted sum of these five problem characteristics. The weights associated with the five characteristics

were proposed empirically and validated by the observations over many projects. Function point is

computed in two steps. The first step is to compute the unadjusted function point (UFP).

 UFP = (Number of inputs)*4 + (Number of outputs)*5 + (Number of inquiries)*4 +

(Number of files)*10 + (Number of interfaces)*10

Number of inputs: Each data item input by the user is counted. Data inputs should be distinguished

from user inquiries. Inquiries are user commands such as print-account-balance. Inquiries are counted

separately. It must be noted that individual data items input by the user are not considered in the

calculation of the number of inputs, but a group of related inputs are considered as a single input.

For example, while entering the data concerning an employee to an employee pay roll software; the data

items name, age, sex, address, phone number, etc. are together considered as a single input. All these

data items can be considered to be related, since they pertain to a single employee.

Number of outputs: The outputs considered refer to reports printed, screen outputs, error messages

produced, etc. While outputting the number of outputs the individual data items within a report are not

considered, but a set of related data items is counted as one input.

Number of inquiries: Number of inquiries is the number of distinct interactive queries which can be

made by the users. These inquiries are the user commands which require specific action by the system.

Number of files: Each logical file is counted. A logical file means groups of logically related data.

Thus, logical files can be data structures or physical files.

Number of interfaces: Here the interfaces considered are the interfaces used to exchange information

with other systems. Examples of such interfaces are data files on tapes, disks, communication links with

other systems etc.

 Once the un-adjusted function point (UFP) is computed, the technical complexity factor (TCF) is

computed next. TCF refines the UFP measure by considering fourteen other factors such as high

transaction rates, throughput, and response time requirements, etc. Each of these 14 factors is assigned

from 0 (not present or no influence) to 6 (strong influence). The resulting numbers are summed, yielding

the total degree of influence (DI). Now, TCF is computed as (0.65+0.01*DI). As DI can vary from 0 to

70, TCF can vary from 0.65 to 1.35. Finally, FP=UFP*TCF.

3. Feature point metric

 A major shortcoming of the function point measure is that it does not take into account

the algorithmic complexity of a software. That is, the function point metric implicitly

assumes that the effort required to design and develop any two functionalities of the

system is the same. But, we know that this is normally not true, the effort required to

develop any two functionalities may vary widely. It only takes the number of functions

that the system supports into consideration without distinguishing the difficulty level of

PREPARED BY: PRAMOD MATHEW JACOB
12
6

SOFTWARE ENGINEERING

developing the various functionalities. To overcome this problem, an extension of the

function point metric called feature point metric is proposed.

 Feature point metric incorporates an extra parameter algorithm complexity. This

parameter ensures that the computed size using the feature point metric reflects the fact

that the more is the complexity of a function, the greater is the effort required to develop

it and therefore its size should be larger compared to simpler functions.

COCOMO (Constructive Cost Model)
 COCOMO (Constructive Cost Estimation Model) was proposed by Boehm [1981]. COCOMO is

used to estimate the total effort required to develop a software project.

 COCOMO divides the software or projects into three categories.

1. Organic: A development project can be considered of organic type, if the project deals with

developing a well understood application program, the size of the development team is reasonably

small, and the team members are experienced in developing similar types of projects.

2. Semidetached: A development project can be considered of semidetached type, if the development

consists of a mixture of experienced and inexperienced staff. Team members may have limited

experience on related systems but may be unfamiliar with some aspects of the system being

developed.

3. Embedded: A development project is considered to be of embedded type, if the software being

developed is strongly coupled to complex hardware, or if the stringent regulations on the operational

procedures exist.

 According to Boehm, software cost estimation should be done through three stages: Basic

COCOMO, Intermediate COCOMO, and Complete COCOMO.

Basic COCOMO Model

The basic COCOMO model gives an approximate estimate of the project parameters. The basic

COCOMO estimation model is given by the following expressions:

Effort = c1 х (KLOC) c2 PM

 Tdev = c3 x (Effort)c4
 Months

Where

• KLOC is the estimated size of the software product expressed in Kilo Lines of Code,

• c1,c2,c3,c4 are constants for each category of software products,

• Tdev is the estimated time to develop the software, expressed in months,

• Effort is the total effort required to develop the software product, expressed in person months

(PMs).

Software category c1 c2 c3 c4

Organic 2.4 1.05 2.5 0.38

Semi- Detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Table: Estimated value of constants for various software categories

PREPARED BY: PRAMOD MATHEW JACOB
12
7

SOFTWARE ENGINEERING

The effort estimation is expressed in units of person-months (PM). It is the area under the person-month

plot (as shown in below figure). It should be carefully noted that an effort of 100 PM does not imply that

100 persons should work for 1 month nor does it imply that 1 person should be employed for 100 months,

but it denotes the area under the person-month curve.

Figure: Person-month curve

Estimation of development effort

For the three classes of software products, the formulas for estimating the effort based on the code size are

shown below: Organic : Effort = 2.4(KLOC)1.05 PM

Semi- detached : Effort = 3.0(KLOC)1.12 PM

Embedded : Effort = 3.6(KLOC)1.20 PM

Estimation of development time

For the three classes of software products, the formulas for estimating the development time based on the

effort are given below:

Organic : Tdev = 2.5(Effort)0.38 Months

Semi- detached : Tdev = 2.5(Effort)0.35 Months

Embedded : Tdev = 2.5(Effort)0.32 Months

 The effort is somewhat super-linear in the size of the software product. Thus, the effort required to develop a

product increases very rapidly with project size as shown in the graph.

PREPARED BY: PRAMOD MATHEW JACOB
12
8

SOFTWARE ENGINEERING

The development time is a sub-linear function of the size of the product, i.e. when the size of the product

increases by two times, the time to develop the product does not double but rises moderately. This can

be explained by the fact that for larger products, a larger number of activities which can be carried out

concurrently can be identified. The parallel activities can be carried out simultaneously by the engineers.

This reduces the time to complete the project. From the graph below, it can be observed that the

development time is roughly the same for all the three categories of products. For example, a 60 KLOC

program can be developed in approximately 18 months, regardless of whether it is of organic,

semidetached, or embedded type.

Figure Effort versus product size

PREPARED BY: PRAMOD MATHEW JACOB
12
9

SOFTWARE ENGINEERING

Fig. 11.5: Development time versus size

From the effort estimation, the project cost can be obtained by multiplying the required effort by the

manpower cost per month. But, implicit in this project cost computation is the assumption that the entire

project cost is incurred on account of the manpower cost alone. In addition to manpower cost, a project

would incur costs due to hardware and software required for the project and the company overheads for

administration, office space, etc.

It is important to note that the effort and the duration estimations obtained using the COCOMO model

are called as nominal effort estimate and nominal duration estimate. The term nominal implies that if

anyone tries to complete the project in a time shorter than the estimated duration, then the cost will

increase drastically. But, if anyone completes the project over a longer period of time than the estimated,

then there is almost no decrease in the estimated cost value.

STEPS TO ESTIMATE COST IN BASIC COCOMO

1. Identify the category to which the software belong to.

2. Estimate the Lines of Code(LOC) and convert it into KLOC

3. Estimate the effort using the appropriate equation constants c1,c2.

4. Estimate the time for development using the computed effort value.

5. Then estimate the development cost

PREPARED BY: PRAMOD MATHEW JACOB
13
0

SOFTWARE ENGINEERING

Example:

Assume that the size of an organic type software product has been estimated to be 32,000 lines of source

code. Assume that the average salary of software engineers be Rs. 15,000/- per month. Determine the

effort required to develop the software product and the nominal development time.

From the basic COCOMO estimation formula for organic software:

 Effort = 2.4 х (32)1.05 = 91 PM

 Nominal development time = 2.5 х (91)0.38 = 14 months

 Cost required to develop the product = 14 х 15,000

 = Rs. 210,000/-

INTERMEDIATE COCOMO
 Basic COCOMO is good for quick estimate of software costs. However it does not account for

differences in hardware constraints, personnel quality and experience, use of modern tools and

techniques, and so on.

 Intermediate COCOMO computes software development effort as function of program size and a set

of "cost drivers" that include subjective assessment of product, hardware, personnel and project

attributes. This extension considers a set of four "cost drivers" each with a number of subsidiary

attributes:-

1. Product: The characteristics of the product that are considered include the inherent complexity of the

product, reliability requirements of the product, etc.

2. Computer: Characteristics of the computer that are considered include the execution speed required,

storage space required, memory constraints etc.

3. Personnel: The attributes of development personnel that are considered include the experience level of

personnel, programming capability, analysis capability, etc.

4. Development Environment: Development environment attributes capture the development facilities

available to the developers. An important parameter that is considered is the sophistication of the

automation (CASE) tools used for software development.

COMPLETE COCOMO
 A major shortcoming of both the basic and intermediate COCOMO models is that they consider

a software product as a single homogeneous entity. However, most large systems are made up

several smaller sub-systems. These subsystems may have widely different characteristics.

 The complete COCOMO model considers these differences in characteristics of the subsystems

and estimates the effort and development time as the sum of the estimates for the individual

subsystems. The cost of each subsystem is estimated separately. This approach reduces the

margin of error in the final estimate.

 The following development project can be considered as an example application of the complete

COCOMO model. A distributed Management Information System (MIS) product for an

organization having offices at several places across the country can have the following sub-

components:

PREPARED BY: PRAMOD MATHEW JACOB
13
1

SOFTWARE ENGINEERING

• Database part

• Graphical User Interface (GUI) part

• Communication part

 Of these, the communication part can be considered as embedded software. The database part

could be semi-detached software, and the GUI part organic software. The costs for these three

components can be estimated separately, and summed up to give the overall cost of the system.

COCOMO – 2
 Basic COCOMO is not suitable for projects of larger size as well as projects which uses reuse –

approach. COCOMO – 2 deals with the above cases and is most suitable for projects developed in

Third Generation Languages (3GL).

 COCOMO – 2 is used to estimate project costs at different phases of the software. As the project

progresses, though these models can be applied at different stages of the same project.

 The various models in COCOMO – 2 are

1. Application composition: Used to estimate cost for prototyping.

2. Early design: Used to estimate cost at the architectural design stage.

3. Post –Architecture : Used to estimate cost during detailed design and coding stage.

4. Reuse model: Used to estimate cost, if code reuse is adapted.

 STEPS TO ESTIMATE EFFORT IN APPLICATION COMPOSTION

1. Estimate the number of screens, reports and 3GL components from an analysis of the SRS

document.

2. Determine the complexity level of each screen and report, and rate these as either simple, medium

or difficult. The complexity of a screen or report is determined by the number of tables and views

it contains.

PREPARED BY: PRAMOD MATHEW JACOB
13
2

SOFTWARE ENGINEERING

Table for Screen complexity assignment

Number of views Tables <4 Tables<8 Tables>=8

<3 Simple Simple Medium

3-7 Simple Medium Difficult

>8 Medium Difficult Difficult

Table for Report complexity assignment

Number of sections Tables <4 Tables<8 Tables>=8

0 or 1 Simple Simple Medium

2 or 3 Simple Medium Difficult

4 or more Medium Difficult Difficult

3. Estimate the complexity and find out the equivalent weight value using the below table. Weights

are the amount of effort required to implement an instance of an object at the assigned complexity

class.

Table for complexity weights for each class of objects

Object type Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3GL components -- -- 10

4. Determine the number of object points (OP). The object point count is the sum of all the assigned

complexity values for the object instances together.

5. Estimate the expected percentage of reuse in the system. Then evaluate the number of New object

point count (NOP).

NOP= ((Object-Points)*(100-% of reuse)) / 100

6. Determine the productivity rate, PROD = NOP / person – month based on CASE maturity value.

7. Finally Effort is computed as E = NOP / PROD.

SOFTWARE PROJECT SCHEDULING

Project-task scheduling is an important project planning activity. It involves deciding which tasks would

be taken up when. In order to schedule the project activities, a software project manager needs to do the

following:

1. Identify all the tasks needed to complete the project.

2. Break down large tasks into small activities.

3. Determine the dependency among different activities.

4. Establish the most likely estimates for the time durations necessary to complete the activities.

5. Allocate resources to activities.

6. Plan the starting and ending dates for various activities.

7. Determine the critical path. A critical path is the chain of activities that determines the duration of

the project.

PREPARED BY: PRAMOD MATHEW JACOB
13
3

SOFTWARE ENGINEERING

WORK BREAK DOWN STRUCTURE

 Work Breakdown Structure (WBS) is used to decompose a given task set recursively into small

activities. WBS provides a notation for representing the major tasks need to be carried out in

order to solve a problem.

 The root of the tree is labelled by the problem name. Each node of the tree is broken down into

smaller activities that are made the children of the node. Each activity is recursively decomposed

into smaller sub-activities until at the leaf level, the activities requires approximately two weeks

to develop. The following figure represents the WBS of an MIS (Management Information

System) software.

GANTT CHART
 The simplest project management tool used to represent the timeline of activities is the Gantt chart.

Henry L. Gantt lent his name to a simple and very useful graphical representation of a project

development schedule. The Gantt chart shows almost all of the information contained in the schedule

activity list, but in a much more digestible way. The schedule information is more
easily grasped and understood, and the activities can be easily compared.

 The Gantt chart enables us to see at any given time, which activities should be occurring in the project.
A Gantt chart has horizontal bars plotted on a chart to represent a schedule.

 In a Gantt chart, Time is plotted on the horizontal axis and activities on the vertical axis. An activity

is represented by a horizontal bar on the Gantt chart. The position of a horizontal bar shows the start and

end time of an activity and the length of the bar show its duration. Gantt chart can be used to analyse

the progress of the project.

PREPARED BY: PRAMOD MATHEW JACOB
13
4

SOFTWARE ENGINEERING

Figure: GANTT chart

PERT CHART
 PERT (Project Evaluation and Review Technique) charts consist of a network of boxes and

arrows. The boxes represent activities and the arrows represent task dependencies.

 PERT chart represents the statistical variations in the project estimates assuming a normal

distribution. Thus, in a PERT chart instead of making a single estimate for each task, pessimistic,

likely, and optimistic estimates are made.

 Since all possible completion times between the minimum and maximum duration for every task

has to be considered, there are not one but many critical paths, depending on the permutations of

the estimates for each task. This makes critical path analysis in PERT charts very complex.

 A critical path in a PERT chart is shown by using thicker arrows.

 Gantt chart representation of a project schedule is helpful in planning the utilization of resources,

while PERT chart is useful for monitoring the timely progress of activities. Also, it is easier to

identify parallel activities in a project using a PERT chart. Project managers need to identify the

parallel activities in a project for assignment to different engineers.

PREPARED BY: PRAMOD MATHEW JACOB
13
5

SOFTWARE ENGINEERING

Figure: PERT chart representation of the MIS problem

15. CASE

CASE stands for Computer Aided Software Engineering. It means, development and maintenance of

software projects with help of various automated software tools.

Benefits of CASE tools

 Reduces the software development time and cost by automating many repetitive manual tasks.

 Helps to create good quality documentation and thus provides a better quality product.

 Helps to create more maintainable software systems.

 Reduces the burden of software engineer.

 Provides more structured and ordered development methodology.

Characteristics of a successful CASE tool

 It should support standard software development methodology and modelling techniques.

 It must provide an integrated environment for software development.

 It must be flexible, so that user can make necessary changes.

 It should support reverse engineering process.

 It must support integration with automated testing tools.

 It must provide online help.

CASE CLASSIFICATIONS

 Upper Case Tools – Tools that mainly concentrate on high level activities of SDLC. Upper CASE

tools are used in planning, analysis and design stages of SDLC.

 Lower Case Tools – tools mainly focuses on the implementation of the system. Lower CASE tools

are used in implementation, testing and maintenance.

 Integrated Case Tools - Integrated CASE tools are helpful in all the stages of SDLC, from

Requirement gathering to Testing and documentation.

CASE tools can be grouped together if they have similar functionality, process activities and capability of

getting integrated with other tools.

