

PREPARED BY: PRAMOD MATHEW JACOB 73

SOFTWARE ENGINEERING

 Once standard solutions emerge, no modifications to the program parts may be necessary. One

can directly use the parts to develop his application. Reuse without modification is more useful
than the classical library modules.

10. SOFTWARE TESTING

Software testing is a process of executing a program or application with the intent of finding the software

bugs.

 It can also be stated as the process of validating and verifying that a software program or application

or product:

o Meets the business and technical requirements that guided it’s design and development

o Works as expected

o Can be implemented with the same characteristic.

 Verification: The set of activities that ensure that software correctly implements a specific function

or algorithm. (Are the algorithms coded correctly?) (Are we building the product right?)

 Validation: The set of activities that ensure that the software that has been built is traceable to

customer requirements. (Does it meet user requirements?) (Are we building the right product?)

NEED OF SOFTWARE TESTING

1. Software testing is really required to point out the defects and errors that were made during the

development phases.

2. It’s essential since it makes sure of the Customer’s reliability and their satisfaction in the application.

3. It is very important to ensure the Quality of the product. Quality product delivered to the customers

helps in gaining their confidence.

4. Testing is necessary in order to provide the facilities to the customers like the delivery of high quality

product or software application which requires lower maintenance cost and hence results into more

accurate, consistent and reliable results.

5. Testing is required for an effective performance of software application or product.

6. It’s important to ensure that the application should not result into any failures because it can be very

expensive in the future or in the later stages of the development.

7. It’s required to stay in the business.

TERMINOLOGIES IN TESTING

• Test case: This is the triplet [I,S,O], where I is the data input to the system, S is the state of the

system at which the data is input, and O is the expected output of the system.

• Test suite: This is the set of all test cases with which a given software product is to be tested.

• Error: Error is deviation from actual and expected value. It represents mistake made by people.

• Fault: Fault is incorrect step, process or data definition in a computer program which causes the

program to behave in an unintended or unanticipated manner. It is the result of the error.

http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/
http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/

PREPARED BY: PRAMOD MATHEW JACOB 74

SOFTWARE ENGINEERING

• Bug: Bug is a fault in the program which causes the program to behave in an unintended or

unanticipated manner. It is an evidence of fault in the program.

• Failure: Failure is the inability of a system or a component to perform its required functions within

specified performance requirements. Failure occurs when fault executes.

• Defect: A defect is an error in coding or logic that causes a program to malfunction or to produce

incorrect/unexpected results. A defect is said to be detected when a failure is observed.

OBJECTIVES OF SOFTWARE TESTING

 Finding defects which may get created by the programmer while developing the software.

 Gaining confidence in and providing information about the level of quality.

 To prevent defects.

 To make sure that the end result meets the business and user requirements.

 To ensure that it satisfies the BRS that is Business Requirement Specification and SRS that is System

Requirement Specifications.

 To gain the confidence of the customers by providing them a quality product.

COMMON ERRORS TO UNCOVER DURING TESTING

• Misunderstood or incorrect arithmetic precedence

• Mixed mode operations (e.g., int, float, char)

• Incorrect initialization of values

• Precision inaccuracy and round-off errors

• Incorrect symbolic representation of an expression (int vs. float)

• Comparison of different data types

• Incorrect logical operators or precedence

• Expectation of equality when precision error makes equality unlikely (using == with float types)

• Incorrect comparison of variables

• Improper or nonexistent loop termination

• Failure to exit when divergent iteration is encountered

• Improperly modified loop variables

• Boundary value violations

TESTING ACTIVITIES

1. Test Suite design

2. Running test cases and checking the result to detect failures: Each test case is run and the results

are compared with expected results.

3. Debugging: To identify the statements that are in error.

4. Error correction: Code is appropriately changed to correct the error.

http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/

PREPARED BY: PRAMOD MATHEW JACOB 75

SOFTWARE ENGINEERING

TYPES OF TESTING

UNIT TESTING

 A unit is the smallest testable part of an application like functions, classes, procedures, interfaces. Unit

testing is a method by which individual units of source code are tested to determine if they are fit for

use.

 Unit tests are basically written and executed by software developers to make sure that code meets

its design and requirements and behaves as expected.

 The goal of unit testing is to segregate each part of the program and test that the individual parts are

working correctly.

 This means that for any function or procedure when a set of inputs are given then it should return the

proper values. It should handle the failures gracefully during the course of execution when any invalid

input is given.

 Unit testing should be done before Integration testing. Unit testing should be done by the developers.

 A unit test provides a written contract that the piece of code must assure. Hence it has several benefits.

Advantages of Unit testing:

1. Issues are found at early stage. Since unit testing are carried out by developers where they test their

individual code before the integration. Hence the issues can be found very early and can be resolved then and

there without impacting the other piece of codes.

2. Unit testing helps in maintaining and changing the code. This is possible by making the codes less

interdependent so that unit testing can be executed. Hence chances of impact of changes to any other code

gets reduced.

3. Since the bugs are found early in unit testing hence it also helps in reducing the cost of bug fixes. Just

imagine the cost of bug found during the later stages of development like during system testing or during

acceptance testing.

PREPARED BY: PRAMOD MATHEW JACOB 76

SOFTWARE ENGINEERING

4. Unit testing helps in simplifying the debugging process. If suppose a test fails then only latest changes made

in code needs to be debugged.

BLACK BOX TESTING / FUNCTIONAL TESTING / BEHAVIOURAL TESTING

 Ensures the functionality of the system or program.

 Specification-based testing technique is also known as ‘black-box’ or input/output driven testing

techniques because they view the software as a black-box with inputs and outputs.

 The testers have no knowledge of how the system or component is structured inside the box. In black-

box testing the tester is concentrating on what the software does, not how it does it.

 The definition mentions both functional and non-functional testing. Functional testing is concerned

with what the system does its features or functions. Non-functional testing is concerned with

examining how well the system does. Non-functional testing like performance, usability, portability,

maintainability, etc.

 Specification-based techniques are appropriate at all levels of testing (component testing through to

acceptance testing) where a specification exists. For example, when performing system or acceptance

testing, the requirements specification or functional specification may form the basis of the tests.

 There are four specification-based or black-box technique:

o Equivalence partitioning

o Boundary value analysis

o Decision tables

o State transition testing

DRIVER AND STUB MODULES

• Driver

– A simple main program that accepts test case data, passes such data to the component being

tested, and prints the returned results

• Stubs

– Serve to replace modules that are subordinate to (called by) the component to be tested

– It uses the module’s exact interface, may do minimal data manipulation, provides verification

of entry, and returns control to the module undergoing testing

http://istqbexamcertification.com/what-is-equivalence-partitioning-in-software-testing/
http://istqbexamcertification.com/what-is-boundary-value-analysis-in-software-testing/
http://istqbexamcertification.com/what-is-decision-table-in-software-testing/
http://istqbexamcertification.com/what-is-state-transition-testing-in-software-testing/

PREPARED BY: PRAMOD MATHEW JACOB 77

SOFTWARE ENGINEERING

 Stubs and drivers are used to replace the missing software and simulate the interface between the

software components in a simple manner.

 For example: Suppose you have a function (Function A) that calculates the total marks obtained by

a student in a particular academic year. Suppose this function derives its values from another function

(Function b) which calculates the marks obtained in a particular subject. You have finished working

on Function A and wants to test it. But the problem you face here is that you can't seem to run the

Function A without input from Function B; Function B is still under development. In this case, you

create a dummy function to act in place of Function B to test your function. This dummy function gets

called by another function. Such a dummy is called a Stub. To understand what a driver is, suppose

you have finished Function B and is waiting for Function A to be developed. In this case you create a

dummy to call the Function B. This dummy is called the driver.

EQUIVALENCE CLASS PARTITIONING

 A black-box testing method that divides the input domain of a program into classes of data from which

test cases are derived

 An ideal test case single-handedly uncovers a complete class of errors, thereby reducing the total

number of test cases that must be developed

 Test case design is based on an evaluation of equivalence classes for an input condition

 An equivalence class represents a set of valid or invalid states for input conditions

 From each equivalence class, test cases are selected so that the largest number of attributes of an

equivalence class are exercise at once

 The idea behind this technique is to divide (i.e. to partition) a set of test conditions into groups or sets

that can be considered the same (i.e. the system should handle them equivalently), hence ‘equivalence

partitioning’. Equivalence partitions are also known as equivalence classes – the two terms mean

exactly the same thing.

 In equivalence-partitioning technique we need to test only one condition from each partition. This is

because we are assuming that all the conditions in one partition will be treated in the same way by the

software. If one condition in a partition works, we assume all of the conditions in that partition will

work, and so there is little point in testing any of these others. Similarly, if one of the conditions in a

PREPARED BY: PRAMOD MATHEW JACOB 78

SOFTWARE ENGINEERING

partition does not work, then we assume that none of the conditions in that partition will work so again

there is little point in testing any more in that partition.

GUIDELINES FOR DERIVING EQUIVALENCE CLASSES

• If an input condition specifies a range, one valid and two invalid equivalence classes are defined

– Input range: 1 – 10 Eq classes: {1..10}, {x < 1}, {x > 10}

• If an input condition requires a specific value, one valid and two invalid equivalence classes are defined

– Input value: 250 Eq classes: {250}, {x < 250}, {x > 250}

• If an input condition specifies a member of a set, one valid and one invalid equivalence class are

defined

– Input set: {-2.5, 7.3, 8.4} Eq classes: {-2.5, 7.3, 8.4}, {any other x}

• If an input condition is a Boolean value, one valid and one invalid class are define

– Input: {true condition} Eq classes: {true condition}, {false condition}

BOUNDARY VALUE ANALYSIS

 Boundary value analysis (BVA) is based on testing at the boundaries between partitions.

 Here we have both valid boundaries (in the valid partitions) and invalid boundaries (in the invalid

partitions).

 A greater number of errors occur at the boundaries of the input domain rather than in the "center"

 Boundary value analysis is a test case design method that complements equivalence partitioning

 It selects test cases at the edges of a class

 It derives test cases from both the input domain and output domain

 GUIDELINES FOR DERIVING EQUIVALENCE CLASSES

1. If an input condition specifies a range bounded by values a and b, test cases should be designed

with values a and b as well as values just above and just below a and b

2. If an input condition specifies a number of values, test case should be developed that exercise the

minimum and maximum numbers. Values just above and just below the minimum and maximum are

also tested

Apply guidelines 1 and 2 to output conditions; produce output that reflects the minimum and the

maximum values expected; also test the values just below and just above

If internal program data structures have prescribed boundaries (e.g., an array), design a test case to

exercise the data structure at its minimum and maximum boundaries

 For example: An input field (Date of BIRTH) in which Month as an input data. Then the valid

input should be any integer from 1 to 12, since there are only 12 months in a calendar year. So

if the user enters the data as ‘25 ‘, then the system shouldn’t accept it. For that we should write

the program condition as (1<=month<=12)

 So in the above case, in Equivalence class partitioning, there are three classes. One valid

class and two invalid class.

Valid class: Any number in between 1 and 12 (1<=month<=12)

Invalid class 1: Numbers less than 1 (Month<1)

Invalid class 2: Numbers greater than 12 (Month>12)

PREPARED BY: PRAMOD MATHEW JACOB 79

SOFTWARE ENGINEERING

So we should select a test case from each of the three equivalence classes. So the test suite may

contain a number between 1 and 12, a number less than 1 and a number greater than 12.

Test suite = {6, -12, 30}

 So in the above case, in Boundary value analysis, the boundary values are 1 and 12. So choose

a number just below the minimal condition value and choose a value just above the maximum

condition value.

So we should select the number just below 1 and just above 12 along with 1 and 12.

Test Suite = {0,1,12,13}

WHITE BOX TESTING / STRUCTURAL TESTING / GLASS BOX TESTING

 Structure-based testing technique is also known as ‘white-box’ or ‘glass-box’ testing technique

because here the testers require knowledge of how the software is implemented, how it works.

 Focuses on the internal structure of the software or program.

 In white-box testing the tester is concentrating on how the software does it. For example, a structural

technique may be concerned with exercising loops in the software.

 Different test cases may be derived to exercise the loop once, twice, and many times. This may be

done regardless of the functionality of the software.

 Structure-based techniques can also be used at all levels of testing. Developers use structure-based

techniques in component testing and component integration testing, especially where there is good tool

support for code coverage.

 Structure-based techniques are also used in system and acceptance testing, but the structures are

different. For example, the coverage of menu options or major business transactions could be the

structural element in system or acceptance testing.

 Uses two testing strategies: Fault based testing and Coverage based testing.

 Fault based testing: It targets to detect certain types of faults. Mutation testing is a kind of fault

based testing.

 Coverage based testing: It attempts to execute (or cover) certain elements of a program. The

various coverage based strategies are statement, branch, condition, path coverage-based testing.

STATEMENT COVERAGE

 Statement coverage based strategy aims to design test cases to ensure that , every statement is

executed at least once.

 The statement coverage is also known as line coverage or segment coverage.

 The principal idea in statement coverage is that unless a statement is executed, there is no way to

determine whether an error exists in that statement.

 The statement coverage covers only the true conditions.

 Through statement coverage we can identify the statements executed and where the code is not

executed because of blockage.

 In this process each and every line of code needs to be checked and executed

Advantage of statement coverage:

 It verifies what the written code is expected to do and not to do

 It measures the quality of code written

 It checks the flow of different paths in the program and it also ensure that whether those path are

tested or not.

PREPARED BY: PRAMOD MATHEW JACOB 80

SOFTWARE ENGINEERING

Disadvantage of statement coverage:

 It cannot test the false conditions.

 It does not report that whether the loop reaches its termination condition.

 It does not understand the logical operators.

The statement coverage can be calculated as shown below:

BRANCH COVERAGE

 Decision coverage also known as branch coverage or all-edges coverage or edge testing.

 It covers both the true and false conditions unlikely the statement coverage.

 A branch is the outcome of a decision, so branch coverage simply measures which decision outcomes

have been tested. This sounds great because it takes a more in-depth view of the source code than

simple statement coverage

 A decision is an IF statement, a loop control statement (e.g. DO-WHILE or REPEAT-UNTIL), or a

CASE statement, where there are two or more outcomes from the statement. With an IF statement, the

exit can either be TRUE or FALSE, depending on the value of the logical condition that comes after

IF.

Advantages of decision coverage:

 To validate that all the branches in the code are reached

 To ensure that no branches lead to any abnormality of the program’s operation

 It eliminate problems that occur with statement coverage testing

Disadvantages of decision coverage:

 This metric ignores branches within boolean expressions which occur due to short-circuit operators.

The decision coverage can be calculated as given below:

CONDITION COVERAGE

 This is closely related to decision coverage but has better sensitivity to the control flow.

 Test cases are designed to make each component of composite conditional expression to assume both

true and false values.

 For a composite conditional expression with ‘n’ components, there will be 2n test cases required to

ensure condition coverage.

http://istqbexamcertification.com/wp-content/uploads/2012/01/statement-coverage-example.jpg
http://istqbexamcertification.com/wp-content/uploads/2012/01/decision-coverage-formula.jpg

PREPARED BY: PRAMOD MATHEW JACOB 81

SOFTWARE ENGINEERING

 However, full condition coverage does not guarantee full decision coverage.

 Condition coverage reports the true or false outcome of each condition.

 Condition coverage measures the conditions independently of each other.

PATH COVERAGE

 White-box testing technique proposed by Tom McCabe.

 It ensures that all linearly independent paths (or basis paths) in the program are executed at least

once.

 Enables the test case designer to derive a logical complexity measure of a procedural design

 Uses this measure as a guide for defining a basis set of execution paths

 A linearly independent path can be defined in terms of the control flow graph (CFG) of a program.

CFG NOTATION

• A circle in a graph represents a node, which stands for a sequence of one or more procedural statements

• A node containing a simple conditional expression is referred to as a predicate node

– Each compound condition in a conditional expression containing one or more Boolean

operators (e.g., and, or) is represented by a separate predicate node

– A predicate node has two edges leading out from it (True and False)

• An edge, or a link, is a an arrow representing flow of control in a specific direction

– An edge must start and terminate at a node

– An edge does not intersect or cross over another edge

• Areas bounded by a set of edges and nodes are called regions

• When counting regions, include the area outside the graph as a region, too

PREPARED BY: PRAMOD MATHEW JACOB 82

SOFTWARE ENGINEERING

• Defined as a path through the program from the start node until the end node that introduces at least

one new set of processing statements or a new condition (i.e., new nodes)

• Must move along at least one edge that has not been traversed before by a previous path

• Basis set for flow graph on the above figure.

– Path 1: 0-1-11

– Path 2: 0-1-2-3-4-5-10-1-11

– Path 3: 0-1-2-3-6-8-9-10-1-11

– Path 4: 0-1-2-3-6-7-9-10-1-11

• The number of paths in the basis set is determined by the cyclomatic complexity

 MCCABE’S CYCLOMATIC COMPLEXITY

 Provides a quantitative measure of the logical complexity of a program

 Defines the number of independent paths in the basis set

 Provides an upper bound for the number of tests that must be conducted to ensure all

statements have been executed at least once

 Can be computed three ways

 The number of regions / No. of closed regions + 1

PREPARED BY: PRAMOD MATHEW JACOB 83

SOFTWARE ENGINEERING

 V(G) = E – N + 2, where E is the number of edges and N is the number of nodes

in graph G

 V(G) = P + 1, where P is the number of predicate nodes in the flow graph G

 Results in the following equations for the example flow graph shown in previous page.

 Number of regions = 4

 V(G) = 14 edges – 12 nodes + 2 = 4

 V(G) = 3 predicate nodes + 1 = 4

 STEPS FOR DERIVING BASIS SET & TEST CASES

1. Using the design or code as a foundation, draw a corresponding flow graph

2. Determine the cyclomatic complexity of the resultant flow graph

3. Determine a basis set of linearly independent paths

4. Prepare test cases that will force execution of each path in the basis set

INTEGRATION TESTING

 Integration testing tests integration or interfaces between components, interactions to different parts of

the system such as an operating system, file system and hardware or interfaces between systems.

 Also after integrating two different components together we do the integration testing. As displayed in

the image below when two different modules ‘Module A’ and ‘Module B’ are integrated then the

integration testing is done.

 Integration testing is done by a specific integration tester or test team.

 Integration testing follows two approach known as ‘Top Down’ approach and ‘Bottom Up’ approach

as shown in the image below:

http://istqbexamcertification.com/wp-content/uploads/2014/09/Integration_testing.jpg

PREPARED BY: PRAMOD MATHEW JACOB 84

SOFTWARE ENGINEERING

INTEGRATION TESTING TECHNIQUES

1. Big Bang integration testing:

In Big Bang integration testing all components or modules are integrated simultaneously, after which

everything is tested as a whole. As per the below image all the modules from ‘Module 1′ to ‘Module 6′ are

integrated simultaneously then the testing is carried out.

Advantage: Big Bang testing has the advantage that everything is finished before integration testing starts.

 Disadvantage: The major disadvantage is that in general it is time consuming and difficult to trace the

cause of failures because of this late integration.

2. Top-down integration testing: Testing takes place from top to bottom, following the control flow or

architectural structure (e.g. starting from the GUI or main menu). Components or systems are substituted by

stubs. Below is the diagram of ‘Top down Approach':

http://istqbexamcertification.com/wp-content/uploads/2012/01/What-is-big-bang-integration-testing1.jpg

PREPARED BY: PRAMOD MATHEW JACOB 85

SOFTWARE ENGINEERING

Advantages of Top-Down approach:

 The tested product is very consistent because the integration testing is basically performed in an

environment that almost similar to that of reality

 Stubs can be written with lesser time because when compared to the drivers then Stubs are simpler to

author.

Disadvantages of Top-Down approach:

 Basic functionality is tested at the end of cycle

3. Bottom-up integration testing: Testing takes place from the bottom of the control flow upwards.

Components or systems are substituted by drivers. Below is the image of ‘Bottom up approach':

Advantage of Bottom-Up approach:

 In this approach development and testing can be done together so that the product or application will

be efficient and as per the customer specifications.

Disadvantages of Bottom-Up approach:

 We can catch the Key interface defects at the end of cycle

 It is required to create the test drivers for modules at all levels except the top control

 4. Mixed / Sandwich Integration testing: It follows the combination of both bottom up and top down

testing approaches. In top down and bottom up testing, testing can be initiated only after the modules in the

same level should be coded and unit tested. The mixed approach overcomes this shortcoming of top-down

and bottom up approaches.

Advantage of Mixed integration:

• Testing can be started as and when modules become available after unit testing.

PREPARED BY: PRAMOD MATHEW JACOB 86

SOFTWARE ENGINEERING

SYSTEM TESTING

 In system testing the behaviour of whole system/product is tested as defined by the scope of the

development project or product.

 It may include tests based on risks and/or requirement specifications, business process, use cases, or

other high level descriptions of system behaviour, interactions with the operating systems, and system

resources.

 System testing is most often the final test to verify that the system to be delivered meets the

specification and its purpose.

 System testing is carried out by specialist testers or independent testers.

 System testing should investigate both functional and non-functional requirements of the testing.

ALPHA TESTING

 System testing done by the developer itself. This test takes place at the developer’s site.

 Alpha testing is testing of an application when development is about to complete. Minor design

changes can still be made as a result of alpha testing.

 Alpha testing is typically performed by a group that is independent of the design team, but still within

the company, e.g. in-house software test engineers, or software QA engineers.

 Alpha testing is final testing before the software is released to the general public. It has two phases:

o In the first phase of alpha testing, the software is tested by in-house developers. They use

either debugger software, or hardware-assisted debuggers. The goal is to catch bugs quickly.

o In the second phase of alpha testing, the software is handed over to the software QA staff, for

additional testing in an environment that is similar to the intended use.

 Alpha testing is simulated or actual operational testing by potential users/customers or an independent

test team at the developers’ site. Alpha testing is often employed for off-the-shelf software as a form

of internal acceptance testing, before the software goes to beta testing.

BETA TESTING

 Testing done by a friendly set of customers.

 It is also known as field testing. It takes place at customer’s site. It sends the system to users who

install it and use it under real-world working conditions.

 A beta test is the second phase of software testing in which a sampling of the intended audience tries

the product out. (Beta is the second letter of the Greek alphabet.) Originally, the term alpha test meant

the first phase of testing in a software development process. The first phase includes unit testing,

component testing, and system testing. Beta testing can be considered “pre-release testing.

 The goal of beta testing is to place your application in the hands of real users outside of your own

engineering team to discover any flaws or issues from the user’s perspective that you would not want

to have in your final, released version of the application.

ACCEPTANCE TESTING

 Testing done by the customer to decide whether to accept or reject the product.

 After the system test has corrected all or most defects, the system will be delivered to the user or

customer for acceptance testing.

 Acceptance testing is basically done by the user or customer although other stakeholders may be

involved as well.

PREPARED BY: PRAMOD MATHEW JACOB 87

SOFTWARE ENGINEERING

 The goal of acceptance testing is to establish confidence in the system.

 Acceptance testing is most often focused on a validation type testing.

REGRESSION TESTING

 During confirmation testing the defect got fixed and that part of the application started working as

intended. But there might be a possibility that the fix may have introduced or uncovered a different

defect elsewhere in the software. The way to detect these ‘unexpected side-effects’ of fixes is to do

regression testing.

 The purpose of a regression testing is to verify that modifications in the software or the environment

have not caused any unintended adverse side effects and that the system still meets its requirements.

 Regression testing are mostly automated because in order to fix the defect the same test is carried out

again and again and it will be very tedious to do it manually.

 Regression tests are executed whenever the software changes, either as a result of fixes or new or

changed functionality.

DEBUGGING
• Objective of debugging is to find and correct the cause of a software error

• Bugs are found by a combination of systematic evaluation, intuition, and luck

• Debugging methods and tools are not a substitute for careful evaluation based on a complete design

model and clear source code

• There are four main debugging strategies

– Brute force

– Backtracking

– Cause elimination

– Program slicing

BRUTE FORCE:

• Most commonly used and least efficient method

• Used when all else fails

• Involves the use of memory dumps, run-time traces, and output statements

• Leads many times to wasted effort and time

BACKTRACKING

• Can be used successfully in small programs

• The method starts at the location where a symptom has been uncovered

• The source code is then traced backward (manually) until the location of the cause is found

• In large programs, the number of potential backward paths may become unmanageably large

CAUSE ELIMINATION

• Involves the use of induction or deduction and introduces the concept of binary partitioning

– Induction (specific to general): Prove that a specific starting value is true; then prove the

general case is true

– Deduction (general to specific): Show that a specific conclusion follows from a set of general

premises

• Data related to the error occurrence are organized to isolate potential causes

• A cause hypothesis is devised, and the aforementioned data are used to prove or disprove the

hypothesis

• Alternatively, a list of all possible causes is developed, and tests are conducted to eliminate each cause

PREPARED BY: PRAMOD MATHEW JACOB 88

SOFTWARE ENGINEERING

• If initial tests indicate that a particular cause hypothesis shows promise, data are refined in an attempt

to isolate the bug

PROGRAM SLICING

 Similar to back tracking, but the search space is reduced by defining slices.

 A slice of a program for a particular variable at a particular statement is the set of source lines preceding

this statement that can influence the value of that variable.

TEST PLAN
 Test plan is the project plan for the testing work to be done. It is not a test design specification, a

collection of test cases or a set of test procedures; in fact, most of our test plans do not address that

level of detail.

 A document describing the scope, approach, resources and schedule of intended test activities. It

identifies amongst others test items, the features to be tested, the testing tasks, who will do each task,

degree of tester independence, the test environment, the test design techniques and entry and exit

criteria to be used, and the rationale for their choice, and any risks requiring contingency planning. It

is a record of the test planning process.

 Master test plan: A test plan that typically addresses multiple test levels.

 Phase test plan: A test plan that typically addresses one test phase.

TEST PLAN GUIDELINES

 Make the plan concise. Avoid redundancy in your test plan.

 Be specific. For example, when you specify an operating system as a property of a test environment,

mention the OS Edition/Version as well, not just the OS Name.

 Make use of lists and tables wherever possible. Avoid lengthy paragraphs.

 Have the test plan reviewed a number of times prior to baselining it or sending it for approval. The

quality of your test plan speaks volumes about the quality of the testing you or your team is going to

perform.

 Update the plan as and when necessary. An out-dated and unused document stinks and is worse than

not having the document in the first place.

IEEE 829 STANDARD TEST PLAN TEMPLATE

Test plan identifier

Test deliverables

Introduction

Test tasks

Test items

Environmental needs

Features to be tested

Responsibilities

Features not to be tested

Staffing and training needs

Approach Schedule

Item pass/fail criteria

Risks and contingencies

Suspension and resumption criteria Approvals

http://istqbexamcertification.com/what-is-fundamental-test-process-in-software-testing/
http://istqbexamcertification.com/what-is-test-design-technique/

PREPARED BY: PRAMOD MATHEW JACOB 89

SOFTWARE ENGINEERING

TEST REPORTING
Test completion reporting is a process where test metrics are reported in summarised format to update the

stakeholders which enables them to take an informed decision.

Test Completion Report Format:

 Test Summary Report Identifier

 Summary

 Variances

 Summary Results

 Evaluation

 Planned vs Actual Efforts

 Sign off

Significance of Test Completion Report:

 An indication of the quality

 Measure outstanding risks

 The level of confidence in tested software

SAMPLE TEST REPORT

