
5

The Maintenanc e Proces s

"Modelling is a tool for coping with problems of largeness "

DeMarco ([79], p 42)

This chapter aims to

1. Discuss the importance of process models.

2. Explain the weaknesses of traditional life-cycle models with
respect to maintenance.

3. Identify ways of accommodating the evolutionary tendency of
software within traditional software life-cycle models.

4. Study examples of maintenance process models.

5. Compare and contrast different types of maintenance process
model.

6. Discuss the strengths and weaknesses of each maintenance
process model.

7. Look at the issue of process maturity.

5.1 Introduction
We have looked at different types of change, why and when they might
be carried out, and the context in which this will be done. This chapter
wil l look at the change process by looking in detail at different ways in
which the process of maintenance has been modelled. In order to study

59

60 Software Maintenance: Concepts and Practice

maintenance process models effectively, they need to be seen in the
context of traditional life-cycle models. A comparison of traditional and
maintenance models helps to highlight the differences between software
development and software maintenance and shows why there is a need
for a 'maintenance-conscious' process model.

5.2 Definitions
Life-cycle - the cyclic series of changes undergone by an entity from
inception to 'death'. In terms of software, the life-cycle is the series of
recognised stages through which a software product cycles during its
development and use.

Model - the representation of an entity or phenomenon.

Process - the progress or course taken, methods of operation, a series of
actions taken to effect a change.

"A specific activity or action performed by a human being or
machine during a software project"

Basili & Abd-El-Hafiz ([15], p.3)

Process model - the representation of the progress or course taken - i.e.
the model of the process.

Software maintenance process - the series of actions taken to effect
change during maintenance.

5.3 The Software Production Process
The software production process encompasses the whole activity from
the initial idea to the final withdrawal of the system (Figure 5.1).

Idea Analysis Requirements Design Implementation Testing Use

^-^7 ^—=7 v- - :7 ^—-7 v---7 v—-7
v J

Figure 5.1 Stages in the evolution of a software system

Maintenance Process Models 61

A process, being the series of discrete actions taken to effect a
change, is distinct from the life-cycle which defines the order in which
these actions are carried out.

The software life-cycle starts with an idea, then goes through the
stages of feasibility study, analysis, design, implementation, testing,
release, operation and use. The software evolves through changes which
lead to, or spring from, new ideas that start the cycle off again. A
familiar example is that of the metamorphosis of an insect (Figure 5.2).
The adult insect lays the egg from which the pupa emerges which
becomes the chrysalis from which the adult emerges which lays the
egg... and so on.

V L j V Rnih-rlK

 Egg (J ^ * »

\j / Chrysalis

Pupa

fgure 5.2 The metamorphosis of an insect

Mini Case Study - The Analysis of Patient Questionnaires at the
ACME Health Clinic

The person whose job it was to analyse patient questionnaires
became disillusioned with the tediousness of sifting through sheets of
paper and collating responses. She had the idea of computerising the
process and thereby automating it. The objectives were to speed the
process up and to allow the computer to deal with the tedium of adding

Pupa

Chrysalis

Figure 5.2 The metamorphosis of an insect

62 Software Maintenance: Concepts and Practice

and collating, removing the time-consuming need for double-checking of
calculations done by hand, thus making the process more reliable.

The technician had to ask the following:

a) Would it be feasible?

b) Could the job be done with available equipment and resources?

The answers being yes, the 'system' progressed to the next stage
- a detailed appraisal of exactly what was needed. Once this was decided,
the system was designed and implemented. Once implemented, the
system was tested to the point where it was deemed reliable enough to
use for real.

In this instance, one person creating a system for her own use
progressed from the original idea to the system in use in a few hours.
Interestingly, but not surprisingly, as soon as it became known that the
system had been computerised, many requests for further data analysis
came in. Not a single one of these could be accommodated. The person
concerned had automated a specific set of analyses, with no
consideration for further expansion.

We are familiar with the life-cycle as a cyclic series of stages
(Figure 5.3) but what exactly comprises these stages?

Requirements analysis

Operation

Design

Testing
Implementation

Figure 5.3 The generic life cycle

Maintenance Process Models 63

Design, for example, can be a pile of documents, a set of
diagrams, ideas in someone's head, drawings on a blackboard. How do
we deal with this plethora of information and make sense of it? We need
a means of representing it in a way that hides the confusing detail and
allows us to understand the major concepts. We need a model.

A familiar example is a map. A map provides an abstract
representation of an area, and a very useful one. Given the real thing, the
area, it is very difficult to know where anything is or how to find one's
way about. Given an abstract and manageable representation, a map, the
task becomes much easier.

JCOT

Figure 5.4 The architectural drawing of the building

Similarly, an architect's drawings (Figure 5.4) represent the
information needed to construct a building. Such a representation gives
more than just the idea of the shape or look of the building (Figure 5.5),
it contains the information needed to enable safe construction of the
building.

In software terms the model is the abstract representation of the
software production process, the series of changes through which a
software product evolves from initial idea to the system in use. For

64 Software Maintenance: Concepts and Practice

software maintenance, it is the representation of those parts of the
process specifically pertaining to the evolution of the software.

Figure 5.5 The finished building

A process model gives an abstract representation of a way in
which to build software. Many process models have been described and
we wil l look at a number of such models.

The term process implies a single series of phases. Life-cycle
implies cycling through this series of phases repeatedly. However, you
wil l find that some texts use the term software process as an alternative
to software life-cycle. In this case, the term process as opposed to life-
cycle is being used to give a different emphasis rather than implying a
series versus a cyclic repetition of a series. The pivotal points of the
software life-cycle in this case are the products themselves and software
process shifts the emphasis to the processes by which the products are
developed.

Exercise 5.1 Define the terms process, life-cycle and model.

Exercise 5.2 Explain the differences between a software life-cycle
and a software process.

Maintenance Process Models 65

5.4 Critical Appraisal of Traditional Process Models
The history and evolution of life-cycle models is closely tied to the
history and evolution of computing itself. As with other areas (the
creation of programming languages, system design and so on) there was
an evolutionary path from the ad hoc to the structured.

In the days when computer system development was a case of
one person developing a system for his or her own use, there were no
major problems with ad hoc and hit or miss methods. Such methods, in
fact, are integral to the learning process in any field. As the general body
of knowledge and experience increases, better understanding results and
better methods can be developed.

Other factors influence the move from the ad hoc to the
structured: risk factors, for example; safety considerations and the
ramifications of failure when a large customer base has to be considered.
Thus need, knowledge and experience lead to better structured and better
understood models.

However, there is a specific aspect to be considered when
looking at the historical development of models for maintenance. The
evolution of models went in parallel with the evolution of software
engineering and computer science in general. It must be remembered that
the level of awareness of software maintenance-related issues was low
until relatively recently. Software maintenance itself as a field of study is
new compared to software development. The process and life-cycle mod-
els have evolved in an environment of high awareness of software
development issues as opposed to maintenance issues and, as such, are
development models.

There are very many software process and life-cycle models and,
of these, many have a variety of permutations. In this section we will
look at three which are representative of the area of process models in
general: code-and-fix, waterfall and spiral, representing respectively the
old, the well established and the new. An outline of these is given below
to provide a framework for subsequent discussion of maintenance
process models. The details of the traditional models are extensively
covered in other texts [255, 274].

66 Software Maintenance: Concepts and Practice

5.4.1 Code-and-Fix Model

Figure 5.6 The code-and-fix model

This is ad hoc and not well defined. It is a simple two-phas"e model
(Figure 5.6). The first phase is to write code. The next phase is to 'fix ' it.
Fixing in this context may be error correction or addition of further
functionality. Using this model, code soon becomes unfixable and
unenhanceable. There is no room in this model for analysis, design or
any aspect of the development process to be carried out in a structured or
detailed way. There is no room to think through a fix or to think of the
future ramifications, and thus errors increase and the code becomes less
maintainable and harder to enhance. On the face of it, this model has
nothing to recommend it. Why then consider it at all? The reason is that
despite the problems, the model is still used, the reason being that the
world of software development often dictates the use of the code-and-fix
model. If a correction or an enhancement must be done very quickly, in a
couple of hours say, there is no time for detailed analysis, feasibility
studies or redesign. The code must be fixed. The major problems of this
scenario are usually overcome by subsuming code-and-fix within a
larger, more detailed model. This idea is explored further in the
discussion of other models.

The major problem with the code-and-fix model is its rigidity. In
a sense, it makes no allowance for change. Although it perhaps does not
assume the software to be correct from the off - it does have a fix stage
as well as a code stage - it makes no provision for alteration and repair.
The first stage is to code. All the other stages through which a software
system must go (analysis, specification, design, testing) are all bundled
together either into the fix stage or mixed up with the coding. This lack
of properly defined stages leads to a lack of anticipation of problems.

Code

Fix

Maintenance Process Models 67

Ripple effects, for example, will go unnoticed until they cause problems,
at which stage further fixes may have become unviable or impossible.
There is no acknowledgement in the model that one route may be better
or less costly than another. In other, more structured models, explicit
provision is made for the following of a particular route, for example a
lesser risk route or a less expensive route. Because there is no such
provision in the code-and-fix model, code structure and maintainability
wil l inevitably deteriorate. Recognition of the problems of ad hoc
software development and maintenance led to the creation of better
structured models.

5.4.2 Waterfall Model

The traditional waterfall model gives a high-level view of the software
life-cycle. At its most basic it is effectively the tried and tested problem-
solving paradigm:

 Decide what to do

 Decide how to do it

 Doit

 Test it

 Use it.

The phases in the waterfall model are represented as a cascade.
The outputs from one phase become the inputs to the next. The processes
comprising each phase are also defined and may be carried out in parallel
(Figure 5.7).

Many variations on this model are used in different situations but
the underlying philosophy in each is the same. It is a series of stages
where the work of each stage is 'signed off and development then
proceeds to the following phase. The overall process is document driven.
The outputs from each stage that are required to keep the process moving
are largely in the form of documents.

The main problem with the original waterfall model lay in its
sequential nature, highlighted by later refinements which adapted it to
contain feedback loops. There was recognition in this of the ever-
increasing cost of correcting errors. An error in the requirements stage,

68 Software Maintenance: Concepts and Practice

for example, is far more costly to correct at a late stage in the cycle and
more costly than a design error.

Nonetheless, the model still fails to capture the evolutionary
nature of the software. The model allows for errors in the specification
stage, for example, to be corrected at later stages via feedback loops, the
aim being to catch and correct errors at as early a stage as possible.
However, this still assumes that at some point a stage can be considered
complete and correct, which is unrealistic. Changes - in specification for
example - wil l occur at later stages in the life-cycle, not through errors
necessarily but because the software itself is evolutionary.

Requirements
analysis

Specification

Design

Implementation

Testing

Operation and use

Figure 5.7 The waterfall model

A specification may be correct at a particular point in time but
the system being specified is a model of some part of the world -
complex air traffic control perhaps, or simple analysis of questionnaire
answers. A system models an aspect of reality which is subject to

Maintenance Process Models 69

change. Systems become incorrect not always through error or oversight
but because we live in an ever-changing world and it is this evolutionary
aspect of software systems that the waterfall model fails to capture.

More recently developed models take a less simplistic view of
the life-cycle and try to do more to accommodate the complexities.

5.4.3 Spiral Model

The phases in this model are defined cyclically. The basis of the spiral
model is a four-stage representation through which the development
process spirals. At each level

 objectives, constraints and alternatives are identified,

 alternatives are evaluated, risks are identified and resolved,

 the next level of product is developed and verified,

 the next phases are planned.

The focus is the identification of problems and the classification
of these into different levels of risk, the aim being to eliminate high-risk
problems before they threaten the software operation or cost.

A basic difference between this and the waterfall model is that it
is risk driven. It is the level of risk attached to a particular stage which
drives the development process. The four stages are represented as
quadrants on a Cartesian diagram with the spiral line indicating the
production process (Figure 5.8).

One of the advantages of this model is that it can be used as a
framework to accommodate other models. The spiral model offers great
advantage in its flexibility , particularly its ability to accommodate other
life-cycle models in such a way as to maximise their good features and
minimise their bad ones. It can accommodate, in a structured way, a mix
of models where this is appropriate to a particular situation. For example,
where a modification is called for quickly, the risks of using the code-
and-fix scenario can be evaluated and, if code-and-fix is used, the
potential problems can be addressed immediately by the appropriate
procedures being built into the next phase.

A problem with the spiral model is a difficulty in matching it to
the requirements for audit and accountability which are sometimes
imposed upon a maintenance or development team. The constraints of

70 Software Maintenance: Concepts and Practice

audit may be incompatible with following the model; for example, a very
tight deadline may not allow sufficient time for full risk evaluation. This
may well be an indication that the constraints imposed in terms of audit
and accountability are less than optimal.

The fact that the model is risk driven and relies heavily on risk
assessment is also a problem area. In breaking down a problem and
specifying it in detail, there is always a temptation to 'do the easy bits
first' and leave the difficult bits until last. The spiral model requires that
the high-risk areas are tackled first and in detail. Although 'difficult '
does not always equate to 'high risk' it often does. A team inexperienced
in risk assessment may run into problems.

Time/Cumulative cost

Software
development/evolution
spirals through the four

phases

Evaluation of alternatives
Identification of risksIdentify:

Objectives
Constraints
Alternati

Development
verification

Figure 5.8 The spiral model

Exercise 5.3 Investigate the ways in which the basic waterfall
model has been enhanced and modified. Describe these
modifications and explain why they were made.

Plan next phase

Maintenance Process Models 71

5.5 Maintenance Process Models
The need for maintenance-conscious models has been recognised for
some time but the current situation is that maintenance models are
neither so well developed nor so well understood as models for software
development.

In the early days, problems with system development were
overwhelming and it is not surprising that the evolutionary nature of
software that is at the heart of maintenance was to an extent ignored [26].
To attempt to take account of future changes in systems, prior to good
understanding of the development process, was akin to asking for the
incorporation of a crystal ball into the model. However, our
understanding of the maintenance process, just like our understanding of
the development process, moved on and maintenance process and life-
cycle models emerged.

Expanding on the example given in chapter 1, let us consider the
addition of a room to a building. When the house was built to its original
design, rooms A and B were built side by side. Some years later, a third
room is needed. Had this need been perceived originally, three smaller
rooms would have been built (Figure 5.9).

The original The later requirement

V

f

V V

Figure 5.9 We need an extra room!

At the time of the original building, there was no need for a third
room. But, after the building had been in use for some time, a need for a
third room emerged. The addition of the third room to the existing

72 Software Maintenance: Concepts and Practice

building is a very different proposition from constructing the third room
in the first place.

This is directly analogous to the addition of new requirements to
a software system. Planning to build three rooms from the start is
relatively easy, as is initial development of a particular functionality.
Deciding to add the third room prior to commencement of building work
is a littl e harder and requires alteration of plans. This equates to the case
where there is a change in requirements subsequent to designing a piece
of software but prior to implementing it. The addition of the extra room
after the building has been completed and is in use is a very different
matter, as is modification to software which is in use.

 The wall between rooms A and B must be knocked down.

Software interfaces between different components may have
to be altered.

 This is a building in use - the problem of creating and removing a
pile of rubble must be addressed. The resultant dust with which the
original building site could have coped may now pose a major threat
to sensitive equipment. At the time of original building, rubbish
chutes and skips would have been on site.

There is far less leeway to allow for the introduction of
errors and ripple effects in a piece of software which must be
released quickly to a large customer base. During initial
development, there was a specific and resourced testing phase.
Reintroduction of modified software may be subject to tight time
deadlines and resource constraints.

 Adding the third room may well require people and materials to
travel through, and thus affect, parts of the building they would not
have had to access originally. The work will impact differently upon
the environment upon which it is carried out. The effects of adding
the third room as opposed to building it in the first place will cause
disruption at a different level, to a different group of people and in
different places. All this needs to be assessed and addressed.

Similarly, a modification to a large and complex software
system has the potential to affect parts of the software from which it
could have been kept completely separate had it been added
originally.

Maintenance Process Models 73

 The physical effect on the building itself will be different. Is the wall
between A and B a load-bearing wall? If so, there will be a need for
a supporting joist. Had the original plans catered for a third room,
there would have been no supporting joist across the middle of a
room in this way. It would have been unnecessary, a design flaw in
fact, had it appeared in the original, and yet in the conversion it is an
absolute necessity

The software will have to be modified to cater for the
addition of the new functionality. Suppose that the new functionality
calls for data to be held in memory in a large table. It may be that the
existing system does not allow the creation of such a structure
because of memory constraints. Data structures in other parts of the
system may not have left enough room for a large table. If i t is not
feasible to make extensive alteration to the rest of the data structures,
then something other than a large table must be used. This something
else, a linked list perhaps, may seem wholly inappropriate. And yet,
the demands of the maintenance environment insist upon it.

 Does the wall contain central heating pipes, wiring ducts, network
cables or anything else which may have to be taken into account
prior to its being demolished?

Likewise, are there hidden dependencies within the software
modules which are to be modified? In theory, these will all be
documented. In practice, buildings tend to be better documented than
software systems.

It is all too easy to assume that an enhancement to an existing
software system can be tackled in exactly the same way as adding that
feature from the start. This misconception may be due to the malleable
nature of software. It is not as obvious with software, as it is with a
building, that adding something later is a very different case from adding
it in the first place.

It is this concept, that maintenance is a very different matter
from initial development, that a maintenance-conscious model must
encompass.

One can go only so far along the road towards predicting a future
need for an extra room. And yet traditional engineering methods allow us
to add new rooms to buildings without having to demolish the building

74 Software Maintenance: Concepts and Practice

or make it unsafe. In software engineering, there is a great deal of
demolition work going on simply because we cannot add the 'extra
room' safely. Predicting every future need is not possible and attempting
to do so is very costly. We can, however, do more to encompass the
genuine needs of maintenance within the models with which we work.

An obvious example is documentation. Engineers in other fields
would not dream of neglecting, or working without, documentation. If
proper documentation did not exist, road workers would cut off mains
services almost every time they dug a hole in a city street. Yet software
engineers often have to rely on their own investigations to discover
dependencies between software modules or to discover potential ripple
effects because the original system and subsequent changes are not
documented.

It is important to recognise the differences between new
development and maintenance but it is also important to recognise the
similarities. In the building analogy; it is the same skills and expertise
that are required to build the new wall whether constructing it in the new
building or adding it later. What will make the difference is whether the
work is being done on a building site or in a building in use.

Idea

Operation Understand the system

Document / N.
/ \ Define

Release new / \ objectives

v e r s i on / \ Analysis

Training \ /Specification

Validation \ /Design

Testing ^ ^ ^-^implementation

Figure 5.10 The 'maintenance conscious' life cycle

The generic stages in a maintenance-conscious model (Figure
5.10) compared with the traditional development model appear similar

Maintenance Process Models 75

on the surface but within the stages there are great differences in
emphasis and procedure. There is more effort required and very different
emphases on the early stages, and conversely less effort required in the
later stages, of the maintenance model as opposed to the development
model (Figure 5.11).

A /Maintenance \ / \

Effort / / \ \

I ^ — D e v e l o p m e nt \ \

Analysis Specification Design Implementation Testing Operation

Lifecycle ^

Figure 5.11 Effort needed in the different stages

Consider the building example again. Buildings are built for a
particular purpose but often change use during their lifetime. A private
house is converted to a shop. A stately home is converted to offices. The
fact that the private house was not originally built with provision for a
shop window or a counter does not mean that the house must be entirely
demolished. Appropriate skills are brought to bear and the required
conversions carried out. If the hopeful shopkeepers were to say to the
builder 'If you were building this window into a new building whose
design had allowed for it, it would take you x person-hours and you
would use these specific materials and spend z pounds. Here are z
pounds, build it this way,' the builder would turn down the job and
wonder why these people wanted to insist on dictating details of

76 Software Maintenance: Concepts and Practice

something they appeared to know nothing about. And yet, much software
maintenance is carried out this way. Had an original specification
allowed for a particular functionality, it might have taken as littl e as five
minutes to implement. 'Please deliver the modified software in five
minutes!' Is it any surprise that software collapses under conversion to a
greater extent than buildings do?

The essence of the problems at the heart of all the traditional
models is in their failure to capture the evolutionary nature of software.
A model is needed which recognises the requirement to build
maintainability into the system. Once again, there are many different
models and we wil l look only at a representative sample of four of them.

5.5.1 Quick-Fix Model
This is basically an ad hoc approach to maintaining software (Figure
5.12). It is a 'firefighting' approach, waiting for the problem to occur and
then trying to fix it as quickly as possible, hence the name.

C
Problem -^^
found ^ \ .

_ Fix it . ^ - ^ ^

Figure 5.12 The quick-fix model

In this model, fixes would be done without detailed analysis of
the long-term effects, for example ripple effects through the software or
effects on code structure. There would be littl e if any documentation. It is
easy to see how the model emerged historically, but it cannot be
dismissed as a purely historical curiosity because, like the code-and-fix
model, it is still used.

What are the advantages of such a model and why is it still used?
In the appropriate environment it can work perfectly well. If for example
a system is developed and maintained by a single person, he or she can
come to learn the system well enough to be able to manage without

Problem

Fix it

Maintenance Process Models 77

detailed documentation, to be able to make instinctive judgements about
how and how not to implement change. The job gets done quickly and
cheaply.

However, such an environment is not the norm and we must
consider the use of this model in the more usual setting of a commercial
operation with a large customer base. Why does anyone in such a setting
still allow the use of an unreliable model like the quick-fix? It is largely
through the pressure of deadlines and resources. If customers are
demanding the correction of an error, for example, they may not be
willin g to wait for the organisation to go through detailed and time-
consuming stages of risk analysis. The organisation may run a higher risk
in keeping its customers waiting than it runs in going for the quickest fix.
But what of the long-term problems? If an organisation relies on quick-
fix alone, it wil l run into difficult and very expensive problems, thus
losing any advantage it gained from using the quick-fix model in the first
place.

The strategy to adopt is to incorporate the techniques of quick-
fix into another, more sophisticated model. In this way any change
hurried through because of outside pressures will generate a recognised
need for preventive maintenance which will repair any damage done.

By and large, people are well aware of the limitations of this
model. Nonetheless, it often reflects only too well the real world business
environment in which they work. Distinction must be made between
short-term and long-term upgrades. If a user finds a bug in a commercial
word processor, for example, it would be unrealistic to expect a whole
new upgrade immediately Often, a company will release a quick fix as a
temporary measure. The real solution wil l be implemented, along with
other corrections and enhancements, as a major upgrade at a later date.

5.5.1.1 Case Study - Storage of Chronological Clinical Data

When the ACME Health Clinic system was originally
developed, it catered only for a single recording per patient for things
such as blood pressure, weight, medication and so on. This was because
of a misunderstanding during requirements analysis which did not come
to light until the system was in use. In fact, the system needed to store
chronological series of recordings. At that stage, the need for storage of
chronological data was immediate. The maintenance programmer
assigned to the task drew up a mental model of data held in small arrays

78 Software Maintenance: Concepts and Practice

to allow speedy retrieval and proceeded to implement the change. This
quick-fix method identified the need

 for the arrays,

 to amend the data structures to allow for linking of the chronological
data,

 for a small restructuring program to modify the existing data.

There was no update of documentation, no documentation of the
changes other than a few in-code comments and no in-depth analysis.

Because this was done speedily as a quick fix, problems such as
array overflow were not considered. In fact, once enough information
was stored, data was going to 'drop off the end' of the arrays and
disappear. This would lead to data corruption in that the chronological
links would be broken and missing links would appear in the middle of
the data chains (Figure 5.13).

This was noticed while another enhancement was being tested,
the potential seriousness of the problem was recognised and the race was
on to solve it before the clinic stored sufficient data to cause the problem.
This imposed yet another tight deadline and the fastest fix had to be
found. The 'best' solution, a radical restructuring of the data and
procedures for data retrieval and storage, was recognised, but could not
be implemented because of the time restriction. Another quick fix had to
be found. The only solution was to 'catch' data overflowing the
temporary array and store it in the patient file. This meant that
chronological links were maintained, but the data was being stored in the
patient's file without being explicitly saved by the clinician. This not
only led to less well-structured code, documentation further out of date
and a situation even harder to retrieve, but was also in contravention of
an original requirement regarding permanent saving of data.

This ACME Health Clinic case study highlights the difficulties
of the quick-fix model. Ripple effects that should have been obvious
were missed. These forced the adoption of a further fix which was
known to be wrong. The resources that had to be diverted into this
emergency repair lessened the likelihood of time being devoted to doc-
umentation update, thus decreasing the chances of the error being
successfully retrieved.

Maintenance Process Models 79

Data in memory . Data on disk

Finâ array
position

5 items in 1 I 1 1 1 I links; to 1st 3 data items
volatile I I I I I i ^ i t em j°n disk in memory

I I ,'" -^ I Data in memory
V ; T he fnk between no longer

Data i t e n ^l 1 1 1 1 (" " d a | f j " m e m° f y access ib le
added to I I I I I I a n d d a t a o n d . sk
r n is broken i 1 i 1 i 1
full array \

Data "falls "" j ̂ ^ — ^ 7
out" I

j Data is stored
Lr—' ! ^ temporarily on disk

X̂ ^̂ ^ 1 1 1 1 1 ,.-1 'H J to prevent the link
-^ ' i being broken

I 1 1 1 1 1 ; J /

I The 'clinically
inappropriate' solution

Figure 5.13 Enhancing the system to deal with chronological data

The underlying basis of the problem is that the quick-fix model
does not 'understand' the maintenance process. The problems
experienced were not hard to predict and the 'advantage' gained by the
original quick fix was soon lost.

Many models have subsequently been developed which look at,
and try to understand, the maintenance process from many different
viewpoints. A representative selection of these is given below.

80 Software Maintenance: Concepts and Practice

5.5.2 Boehm's Model
In 1983 Boehm [36] proposed a model for the maintenance process
based upon economic models and principles. Economic models are
nothing new. Economic decisions are a major driving force behind many
processes and Boehm's thesis was that economic models and principles
could not only improve productivity in maintenance but also help
understanding of the process.

Boehm represents the maintenance process as a closed loop
cycle (Figure 5.14). He theorises that it is the stage where management
decisions are made that drives the process. In this stage, a set of
approved changes is determined by applying particular strategies and
cost-benefit evaluations to a set of proposed changes. The approved
changes are accompanied by their own budgets which will largely deter-
mine the extent and type of resource expended.

Management decisions

Proposed/cnanges

Evaluation

Approv«sd changes

Chanfce
implemented

New version of software

Software in use

Figure 5.14 Boehm's model - 1983

Results

Maintenance Process Models 81

The survey by Leintz and Swanson [176] (Figure 5.15) showed
that almost half maintenance effort was devoted to non-discretionary
maintenance activities.

Software
maintenance
effort

54.7%

45.3% I 1

Non discretionary
maintenance Discretionary maintenance

emergency fixes " enhancements for users
debugging " documentation improvement

- changes to input data " improving efficiency
changes to hardware

Figure 5.15 Results of Lientz and Swansons' survey- 1978

In terms of the production function - the economic relationship
between the inputs to a process and its benefits - this reflects the typical
three-segment graph of;

 Investment: This is a phase of low input of resource and low benefit.
This correlates to a newly released software product which has a
high requirement for emergency fixes and mandatory enhancements.

 High payoff: An organisation sees increasing benefit from the
software product and the initial problems are ironed out. This is a
phase during which resource is put into user enhancements and
improvements in documentation and efficiency. Cumulative benefit
to the organisation increases quickly during this phase.

 Diminishing returns: Beyond a certain point, the rate of increase of
cumulative benefit slows. The product has reached its peak of

82 Software Maintenance: Concepts and Practice

usefulness. The product has reached the stage where radical change
becomes less and less cost effective.

Boehm [36] sees the maintenance manager's task as one of
balancing the pursuit of the objectives of maintenance against the
constraints imposed by the environment in which maintenance work is
carried out.

Thus, the maintenance process is driven by the maintenance
manager's decisions which are based on the balancing of objectives
against constraints.

In the example of the problems with the ACME Health Clinic
system, this approach to maintenance would have recognised that the
quick-fix approach adopted was not appropriate. Had a quick fix been
essential, it would have been a temporary holding measure which would
have allowed the system to continue running without radical and ill -
thought-out changes. These would have been assessed as part of the
overall strategy and would have allowed a progression towards the real
solution instead of the inevitable path away from it.

5.5.3 Osborne's Model

Another approach is that proposed by Osborne [210]. The difference
between this model and the others described here is that it deals directly
with the reality of the maintenance environment. Other models tend to
assume some facet of an ideal situation - the existence of full
documentation, for example. Osborne's model makes allowance for how
things are rather than how we would like them to be.

The maintenance model is treated as continuous iterations of the
software life-cycle with, at each stage, provision made for
maintainability to be built in. If good maintenance features already exist,
for example full and formal specification or complete documentation, all
well and good, but if not, allowance is made for them to be built in.

The stages in the maintenance life-cycle are shown in Figure
5.16 and include recognition of the steps where iterative loops will often
occur.

Maintenance Process Models 83

Identification of need for change

Change request submitted

Requirements analysis

Change request

rejected ^- ^ approved

/ Task scheduled

Design analysis

Design review

Modification to code

Review of proposed change

Testing

Documentation update

Standards audit ^/^

User acceptance

tiorueviePost-installatiorueview of changes

Task completed

n

Figure 5.16 Osborne's model of the software maintenance process

Osborne hypothesises that many technical problems which arise
during maintenance are due to inadequate management communications
and control, and recommends a strategy that includes:

 the inclusion of maintenance requirements in the change
specification;

 a software quality assurance program which establishes quality
assurance requirements;

84 Software Maintenance: Concepts and Practice

 a means of verifying that maintenance goals have been met;

 performance review to provide feedback to managers.

5.5.4 Iterative Enhancement Model

Analyse existing system

Characterise

Redesign (] Pr oPo s ed
c u r r e nt \ / modifications

version and
implement

Figure 5.17 The three stages of iterative enhancement

This model has been proposed based on the tenet that the implementation
of changes to a software system throughout its lifetime is an iterative
process and involves enhancing such a system in an iterative way. It is
similar to the evolutionary development paradigm during pre-installation.

Originally proposed as a development model but well suited to
maintenance, the motivation for this was the environment where
requirements were not fully understood and a full system could not be
built.

Adapted for maintenance, the model assumes complete
documentation as it relies on modification of this as the starting point for
each iteration. The model is effectively a three-stage cycle (Figure 5.17):

 Analysis.

 Characterisation of proposed modifications.

 Redesign and implementation.

The existing documentation for each stage (requirements, design,
coding, testing and analysis) is modified starting with the highest-level
document affected by the proposed changes. These modifications are
propagated through the set of documents and the system redesigned.

Maintenance Process Models 85

The model explicitly supports reuse (see chapter 8) and also
accommodates other models, for example the quick-fix model.

The pressures of the maintenance environment often dictate that
a quick solution is found but, as we have seen, the use of the 'quickest'
solution can lead to more problems than it solves. As with the previous
model, iterative enhancement lends itself to the assimilation of other
models within it and can thus incorporate a quick fix in its own more
structured environment. A quick fix may be carried out, problem areas
identified, and the next iteration would specifically address them.

The problems with the iterative enhancement model stem from
assumptions made about the existence of full documentation and the
ability of the maintenance team to analyse the existing product in full.
Whereas wider use of structured maintenance models will lead to a
culture where documentation tends to be kept up to date and complete,
the current situation is that this is not often the case.

5.5.5 Reuse-Oriented Model

This model is based on the principle that maintenance could be viewed as
an activity involving the reuse of existing program components. The
concept of reuse is considered in more detail in chapter 8. The reuse
model described by Basili [16] has four main steps:

 Identification of the parts of the old system that are candidates for
reuse,

 Understanding these system parts,

 Modification of the old system parts appropriate to the new
requirements,

 Integration of the modified parts into the new system.

A detailed framework is required for the classification of
components and the possible modifications. With the full reuse model
(Figure 5.18) the starting point may be any phase of the life-cycle - the
requirements, the design, the code or the test data - unlike other models.
For example, in the quick-fix model, the starting point is always the
code.

86 Software Maintenance: Concepts and Practice

Old system New system
i 1

Requirements >i K Requirements

analysis Component!* a n a l y s is

Design >j L i l "" ary k Design
i i

Source code ^j K Source code
i i

Test data >j j< Test data
i i

Figure 5.18 The reuse model

Exercise 5.4 Compare and contrast Osborne's maintenance process
model with the other maintenance process models dealt
with in this chapter.

Exercise 5.5 Describe how the ACME Health Clinic system might
have been more effectively modified. Assume the same
tight deadlines but investigate the incorporation of the
quick-fix model into another, more structured model.

5.6 When to Make a Change
So far discussion has been about the introduction of change into a system
without considering whether or not that change should be made at all. In
other words, the ways in which different models approach the
implementation of change has been considered but without addressing
the important question of how to decide when a change should be made.
It cannot simply be assumed that everyone involved with a system, from
the developers to the users, can throw their ideas into the arena and
automatically have them implemented. That would lead to chaos.

Not all changes are feasible. A change may be desirable but too
expensive. There has to be a means of deciding when to implement a
change. Ways of doing this, e.g. via a Change Control Board, are
explored in detail in chapter 11.

Exercise 5.6 What was the last software project you worked on?
Was it a commercial project, an undergraduate project
or a personal project? Write a critical appraisal of the

Maintenance Process Models 87

life-cycle model to which you worked. Was it well
structured or ad hoc? Would you work to a different
model if you were to start this project again?

Exercise 5.7 You are the IT manager in charge of a large library
software system which fails unexpectedly one Monday
morning. How would you go about the process of
solving this problem

1. if it is imperative that it is up and running within
two hours?

2. if the library is able to function adequately for
several days without its software system?

5.7 Process Maturity
We have looked at how processes are modelled, but a vital issue is of
course, how they are used.

Knowledge of the theory does not lead automatically to effective
use in practice. Many undergraduate software engineering programmes
include a group project where students work together on a large software
project, to mimic the commercial environment. Processes will have been
learnt in other parts of the course. If the application of these to the group
work is ad hoc and not controlled, the results of such projects will be
unpredictable. Outcomes will depend upon chance, individual flair of
team members and wil l by and large be random. Well-organised projects,
in contrast, should allow all groups to use effectively the processes they
have learnt in their theoretical courses.

A similar situation holds in a commercial software house. Some
companies carry on successful operations for a long time reliant on a few
very good programmers. If they do not put resources into building the
maturity of the processes themselves, there will come a point where the
operation cannot continue. The burden will become far too great for the
few people carrying it. They will leave and the whole operation will
collapse.

Organisations need a means by which to assess the maturity and
effectiveness of their processes.

88 Software Maintenance: Concepts and Practice

5.7.1 Capability Maturity Mode/ 8 for Software
The Software Engineering Institute (SEI) developed a capability maturity
model for software [217]. Using this, the maturity of processes can be
assessed. Five levels are defined:

1) Initial . The software process is ad hoc. Few processes are
defined. Success depends on individual flair of team members.

2) Repeatable. Basic processes are established, tracking cost,
scheduling, and functionality. Successes can be repeated on projects with
similar applications.

3) Defined. Processes are documented and standardised. There
exists within the organisation standard processes for developing and
maintaining software. All projects use a tailored and approved version of
the standard process.

4) Managed. Detailed measures are collected, both of the
process and the quality of the product. Quantitative understanding and
control is achieved.

5) Optimising. Quantitative feedback is evaluated and used from
the processes and from the piloting of innovative ideas and technologies.
This enables continuous process improvement.

The SEI's model is not the only one in use, but is widely
referenced and other models [63] tend to be closely cross-referenced with
it. The benefits accruing from software process improvement based upon
the SEI's model have been studied and documented [128, 161].

5.7.2 Software Experience Bases

The idea of an organisation continually improving through sharing
experience is a concept that can counter the vulnerability inherent in
having experience concentrated in a few skilled employees.

Knowledge can be formalised into guidelines and models, or
may be embodied in the skills of the personnel involved. The latter is as
much an asset as a company's software systems, built using such
knowledge, but harder to turn into an asset that can effectively be shared
and retained.

Organisations have created systems to support knowledge and
experience sharing e.g. knowledge and experience databases, with

Maintenance Process Models 89

varying degrees of success. Conradi et al [67] suggest that software
experience base is a more useful term than database, to avoid
inappropriate comparison with the traditional database management
systems. They propose four factors required for successful
implementation of a software experience base:

1. Cultural change - people must become comfortable with sharing
knowledge and using others' knowledge and experience, in order that
the software experience base is active and used.

2. Stability - an unstable business environment will not be conducive to
the development of a culture or a system for knowledge and
experience sharing.

3. Business value - in order for any system to be used and useful in
today's business world, it must provide a demonstrable payback.

4. Incremental implementation - implementing a software experience
base in small increments is of use in keeping the process close to the
users and, with effective feedback, prevents the software experience
base becoming a remote and irrelevant entity.

5.8 Summary
The key points that have been covered in this chapter are:

 The software life cycle is the cyclic series of phases through which a
software system goes during its development and use. A process is a
single series of such phases.

 A process model abstracts the confusing plethora of detail from the
process of software evolution and allows us to understand it.

 Traditional life-cycle models fail to take account of the evolutionary
nature of software systems.

 There are major differences between new development and
maintenance although they have many specific phases in common.
Maintenance-conscious models can be built from traditional models
by catering for the evolutionary tendency of the software.

 There are many different maintenance models. Three representative
ones are quick-fix which is an ad hoc, fire-fighting approach;
iterative enhancement which is based on the iterative nature of

90 Software Maintenance: Concepts and Practice

change to a system; and reuse-oriented which sees maintenance as an
activity involving the reuse of program components. The most
pragmatic approach is given by Osborne's model.

 Models differ in bias: some are oriented towards economic aspects,
some towards products and some towards processes.

 All models have strengths and weaknesses. No one model is
appropriate in all situations and often a combination of models is the
best solution.

 By improving the maturity of their software processes, software
developers and maintainers move from as-hoc, ill-defined processes
where success is largely a matter of chance, to a situation of
predictable and repeatable project outcomes and continual
improvement.

This part of the book has put maintenance activities into context
and looked at how the maintenance process is modelled. The next stage
is to look at what actually happens during maintenance.

