
1

JavaScript

2

4.1 Overview of JavaScript: Origins

• Originally named LiveScript

• JavaScript was invented by Brendan Eich

• Originally developed by Netscape

• Joint Development with Sun Microsystems in 1995

• Version 1.0 to 1.8

• Standard 262 (ECMA-262) of the European Computer Manufacturers

Association – approved by ISO as ISO16262

• ECMA-262 edition 3 is the current standard

• Edition 4 is under development

• Supported by Netscape, Mozilla, Internet Explorer

• Microsoft JavaScript is named JScript

3

4.1 JavaScript Components

• Core
• The heart of the language

• Client-side
• Library of objects supporting browser control and user interaction

• Server-side
• Library of objects that support use in web servers

• Text focuses on Client-side

4

4.1 Java and JavaScript

• Differences

• JavaScript has a different object model from Java

• JavaScript is not strongly typed

• Variables in JavaScript need not be declared and are dynamically

typed, making compile time type checking impossible

• Objects in Java are static but in JavaScript objects are dynamic

• Compiling and execution of JavaScript at the time document

rendering.

5

4.1 Uses of JavaScript

• Provide alternative to server-side programming

• Servers are often overloaded

• Client processing has quicker reaction time

• JavaScript can work with forms

• JavaScript can interact with the internal model of the

web page (Document Object Model)

• JavaScript is used to provide more complex user

interface than plain forms with HTML/CSS can provide

6

4.1 Event-Driven Computation

• Users actions, such as mouse clicks and key presses,

are referred to as events

• The main task of most JavaScript programs is to

respond to events

• For example, a JavaScript program could validate data

in a form before it is submitted to a server

• Caution: It is important that crucial validation be done by the server. It

is relatively easy to bypass client-side controls

• For example, a user might create a copy of a web page but remove all

the validation code.

7

4.1 XHTML/JavaScript Documents

• When JavaScript is embedded in an XHTML document, the browser

must interpret it

• Two locations for JavaScript server different purposes

• JavaScript in the head element will react to user input and be called from other

locations

• JavaScript in the body element will be executed once as the page is loaded

• Various strategies must be used to ‘protect’ the JavaScript from the

browser

• For example, comparisons present a problem since < and > are used to mark

tags in XHTML

• JavaScript code can be enclosed in XHTML comments

8

4.2 Object Orientation and JavaScript

• JavaScript is object-based

• JavaScript defines objects that encapsulate both data and processing

• However, JavaScript does not have true inheritance nor subtyping

• JavaScript provides prototype-based inheritance

9

4.2 JavaScript Objects

• Objects are collections of properties

• Properties are either data properties or method
properties

• Data properties are either primitive values or references
to other objects

• Primitive values are often implemented directly in
hardware

• The Object object is the ancestor of all objects in a
JavaScript program

• Object has no data properties, but several method properties

10

4.3 JavaScript in XHTML

• Directly embedded
<script type=“text/javascript”>

 <!--

 …Javascript here…

 -->

</script>

• However, note that a-- will not be allowed here!

• Indirect reference
<script type=“text/javascript” src=“tst_number.js”/>

• This is the preferred approach

11

4.3 General Syntactic Characteristics

• Reserved words

• Comments
• //

• /* … */

12

4.3 Statement Syntax

• Statements can be terminated with a semicolon

• However, the interpreter will insert the semicolon if
missing at the end of a line and the statement seems to
be complete

• Can be a problem:
return

x;

• If a statement must be continued to a new line, make
sure that the first line does not make a complete
statement by itself

• Example hello.html

13

4.4 Primitive Types

• Five primitive types
• Number

• String

• Boolean

• Undefined

• Null

• There are five classes corresponding to the five
primitive types

• Wrapper objects for primitive values

• Place for methods and properties relevant to the primitive types

• Primitive values are coerced to the wrapper class as necessary, and
vice-versa

14

4.4 Primitive and Object Storage

15

4.4 Numeric and String Literals

• Number values are represented internally as double-
precision floating-point values

• Number literals can be either integer or float

• Float values may have a decimal and/or and exponent

• A String literal is delimited by either single or double
quotes

• There is no difference between single and double quotes

• Certain characters may be escaped in strings

• \’ or \” to use a quote in a string delimited by the same quotes

• \\ to use a literal backspace

• The empty string ‘’ or “” has no characters

16

4.4 Other Primitive Types

• Null
• A single value, null

• null is a reserved word

• A variable that is used but has not been declared nor been assigned a
value has a null value

• Using a null value usually causes an error

• Undefined
• A single value, undefined

• However, undefined is not, itself, a reserved word

• The value of a variable that is declared but not assigned a value

• Boolean
• Two values: true and false

17

4.4 Declaring Variables

• JavaScript is dynamically typed, that is, variables do not
have declared types

• A variable can hold different types of values at different times during
program execution

• A variable is declared using the keyword var
var counter,

index,

pi = 3.14159265,

quarterback = "Elway",

stop_flag = true;

18

4.4 Numeric Operators

• Standard arithmetic
• + * - / %

• Increment and decrement
• -- ++

• Increment and decrement differ in effect when used before and after a
variable

• Assume that a has the value 3, initially

• (++a) * 3 has the value 24

• (a++) * 3 has the value 27

• a has the final value 8 in either case

19

4.4 Precedence of Operators

Operators Associativity

++, --, unary - Right

*, /, % Left

+, - Left

>, <, >= ,<= Left

==, != Left

===,!== Left

&& Left

|| Left

=, +=, -=, *=, /=, &&=, ||=, %= Right

20

4.4 Example of Precedence

var a = 2,

b = 4,

c,

d;

c = 3 + a * b;

// * is first, so c is now 11 (not 24)

d = b / a / 2;

// / associates left, so d is now 1 (not 4)

21

4.4 The Math Object

• Provides a collection of properties and methods useful
for Number values

• This includes the trigonometric functions such as sin
and cos

• When used, the methods must be qualified, as in
Math.sin(x)

22

4.4 The Number Object

• Properties
• MAX_VALUE

• MIN_VALUE

• NaN

• POSITIVE_INFINITY

• NEGATIVE_INFINITY

• PI

• Operations resulting in errors return NaN
• Use isNaN(a) to test if a is NaN

• toString method converts a number to string

23

4.4 String Catenation

• The operation + is the string catenation operation

• In many cases, other types are automatically converted
to string

24

4.4 Implicit Type Conversion

• JavaScript attempts to convert values in order to be able
to perform operations

• “August “ + 1977 causes the number to be converted to
string and a concatenation to be performed

• 7 * “3” causes the string to be converted to a number
and a multiplication to be performed

• null is converted to 0 in a numeric context, undefined to
NaN

• 0 is interpreted as a Boolean false, all other numbers are
interpreted a true

• The empty string is interpreted as a Boolean false, all
other strings (including “0”!) as Boolean true

• undefined, Nan and null are all interpreted as Boolean
false

25

4.4 Explicit Type Conversion

• Explicit conversion of string to number
• Number(aString)

• aString – 0

• Number must begin the string and be followed by space or end of string

• parseInt and parseFloat convert the beginning of a
string but do not cause an error if a non-space follows
the numeric part

26

4.4 String Properties and Methods

• One property: length
• Note to Java programmers, this is not a method!

• Character positions in strings begin at index 0

27

4.4.11 String Methods

Method Parameters Result

charAt A number Returns the character in the String
object that is at the specified
position

indexOf One-character string Returns the position in the String
object of the parameter

substring Two numbers Returns the substring of the String
object from the first parameter
position to the second

toLowerCase None Converts any uppercase letters in
the string to lowercase

toUpperCase None Converts any lowercase letters in
the string to uppercase

28

4.4 The typeof Operator

• Returns “number” or “string” or “boolean” for primitive
types

• Returns “object” for an object or null

• Two syntactic forms
• typeof x

• typeof(x)

29

4.4 Assignment Statements

• Plain assignment indicated by =

• Compound assignment with
• += -= /= *= %= …

• a += 7 means the same as

• a = a + 7

30

4.4 The Date Object

• A Date object represents a time stamp, that is, a point in
time

• A Date object is created with the new operator
• var now= new Date();

• This creates a Date object for the time at which it was created

31

4.4 The Date Object: Methods
toLocaleString A string of the Date information

getDate The day of the month

getMonth
The month of the year, as a number in the range of 0 to

11

getDay The day of the week, as a number in the range of 0 to 6

getFullYear The year

getTime The number of milliseconds since January 1, 1970

getHours
The number of the hour, as a number in the range of 0

to 23

getMinutes
The number of the minute, as a number in the range of 0

to 59

getSeconds
The number of the second, as a number in the range of

0 to 59

getMilliseconds
The number of the millisecond, as a number in the

range of 0 to 999

32

4.5 Window and Document

• The Window object represents the window in which the
document containing the script is being displayed

• The Document object represents the document being
displayed using DOM

• Window has two properties
• window refers to the Window object itself

• document refers to the Document object

• The Window object is the default object for JavaScript,
so properties and methods of the Window object may be
used without qualifying with the class name

33

4.5 Screen Output and Keyboard Input

• Standard output for JavaScript embedded in a browser
is the window displaying the page in which the
JavaScript is embedded

• The write method of the Document object write its
parameters to the browser window

• The output is interpreted as HTML by the browser

• If a line break is needed in the output, interpolate

into the output

34

4.5 The alert Method

• The alert method opens a dialog box with a message

• The output of the alert is not XHTML, so use new lines
rather than

alert("The sum is:" + sum + "\n");

35

4.5 The confirm Method

• The confirm methods displays a message provided as a
parameter

• The confirm dialog has two buttons: OK and Cancel

• If the user presses OK, true is returned by the method

• If the user presses Cancel, false is returned

var question =

 confirm("Do you want to continue this download?");

36

4.5 The prompt Method

• This method displays its string argument in a dialog box
• A second argument provides a default content for the user entry area

• The dialog box has an area for the user to enter text

• The method returns a String with the text entered by the
user

name = prompt("What is your name?", "");

37

4.5 Example of Input and Output

• roots.html

38

4.6 Control Statements

• A compound statement in JavaScript is a sequence of 0
or more statements enclosed in curly braces

• Compound statements can be used as components of control
statements allowing multiple statements to be used where,
syntactically, a single statement is specified

• A control construct is a control statement including the
statements or compound statements that it contains

39

4.6 Control Expressions

• A control expression has a Boolean value
• An expression with a non-Boolean value used in a control statement

will have its value converted to Boolean automatically

• Comparison operators
• == != < <= > >=

• === compares identity of values or objects

• 3 == ‘3’ is true due to automatic conversion

• 3 === ‘3’ is false

• Boolean operators
• && || !

• Warning! A Boolean object evaluates as true
• Unless the object is null or undefined

40

4.6 Selection Statements

• The if-then and if-then-else are similar to that in other
programming languages, especially C/C++/Java

41

4.6 switch Statement Syntax

switch (expression) {

case value_1:

 // statement(s)

case value_2:

 // statement(s)

...

[default:

 // statement(s)]

}

42

4.6 switch Statement Semantics

• The expression is evaluated

• The value of the expressions is compared to the value in
each case in turn

• If no case matches, execution begins at the default case

• Otherwise, execution continues with the statement
following the case

• Execution continues until either the end of the switch is
encountered or a break statement is executed

43

4.6 Example borders2.js

User Input Prompt

Results

44

4.6 Loop Statements

• Loop statements in JavaScript are similar to those in
C/C++/Java

• While
while (control expression)

 statement or compound statement

• For
for (initial expression; control expression; increment expression)

 statement or compound statement

• do/while
do statement or compound statement

while (control expression)

45

4.6 date.js Example

• Uses Date objects to time a calculation

• Displays the components of a Date object

• Illustrates a for loop

46

4.6 while Statement Semantics

• The control expression is evaluated

• If the control expression is true, then the statement is
executed

• These two steps are repeated until the control
expression becomes false

• At that point the while statement is finished

47

4.6 for Statement Semantics

• The initial expression is evaluated

• The control expression is evaluated

• If the control expression is true, the statement is
executed

• Then the increment expression is evaluated

• The previous three steps are repeated as long as the
control expression remains true

• When the control expression becomes false, the
statement is finished executing

48

4.6 do/while Statement Semantics

• The statement is executed

• The control expression is evaluated

• If the control expression is true, the previous steps are
repeated

• This continues until the control expression becomes
false

• At that point, the statement execution is finished

49

4.7 Object Creation and Modification

• The new expression is used to create an object
• This includes a call to a constructor

• The new operator creates a blank object, the constructor creates and
initializes all properties of the object

• Properties of an object are accessed using a dot
notation: object.property

• Properties are not variables, so they are not declared
• An object may be thought of as a Map/Dictionary/Associative-Storage

• The number of properties of an object may vary
dynamically in JavaScript

50

4.7 Dynamic Properties

• Create my_car and add some properties
// Create an Object object

var my_car = new Object();

// Create and initialize the make property

my_car.make = "Ford";

// Create and initialize model

my_car.model = "Contour SVT";

• The delete operator can be used to delete a property from
an object
• delete my_car.model

51

4.7 The for-in Loop

• Syntax
for (identifier in object)

statement or compound statement

• The loop lets the identifier take on each property in turn in
the object

• Printing the properties in my_car:
for (var prop in my_car)

 document.write("Name: ", prop, "; Value: ",

 my_car[prop], "
");

• Result:
Name: make; Value: Ford

Name: model; Value: Contour SVT

52

4.8 Arrays

• Arrays are lists of elements indexed by a numerical
value

• Array indexes in JavaScript begin at 0

• Arrays can be modified in size even after they have been
created

53

4.8 Array Object Creation

• Arrays can be created using the new Array method
• new Array with one parameter creates an empty array of the specified

number of elements

• new Array(10)

• new Array with two or more parameters creates an array with the
specified parameters as elements

• new Array(10, 20)

• Literal arrays can be specified using square brackets to
include a list of elements

• var alist = [1, “ii”, “gamma”, “4”];

• Elements of an array do not have to be of the same type

54

4.8 Characteristics of Array Objects

• The length of an array is one more than the highest
index to which a value has been assigned or the initial
size (using Array with one argument), whichever is
larger

• Assignment to an index greater than or equal to the
current length simply increases the length of the array

• Only assigned elements of an array occupy space
• Suppose an array were created using new Array(200)

• Suppose only elements 150 through 174 were assigned values

• Only the 25 assigned elements would be allocated storage, the other
175 would not be allocated storage

55

4.8 Example insert_names.js

• This example shows the dynamic nature of arrays in
JavaScript

56

4.8 Array Methods

• join

• reverse

• sort

• concat

• slice

57

4.8 Dynamic List Operations

• push
• Add to the end

• pop
• Remove from the end

• shift
• Remove from the front

• unshift
• Add to the front

58

4.8 Two-dimensional Arrays

• A two-dimensional array in JavaScript is an array of
arrays

• This need not even be rectangular shaped: different rows could have
different length

• Example nested_arrays.js illustrates two-dimensional
arrays

59

4.9 Functions

60

4.9 Function Fundamentals

• Function definition syntax
• A function definition consist of a header followed by a compound

statement

• A function header:

• function function-name(optional-formal-parameters)

• return statements
• A return statement causes a function to cease execution and control to

pass to the caller

• A return statement may include a value which is sent back to the caller

• This value may be used in an expression by the caller

• A return statement without a value implicitly returns undefined

• Function call syntax
• Function name followed by parentheses and any actual parameters

• Function call may be used as an expression or part of an expression

• Functions must defined before use in the page header

61

4.9 Functions are Objects

• Functions are objects in JavaScript

• Functions may, therefore, be assigned to variables and
to object properties

• Object properties that have function values are methods of the object

• Example
function fun() {

 document.write("This surely is fun!
");

}

 ref_fun = fun; // Now, ref_fun refers to the fun object

 fun(); // A call to fun

 ref_fun(); // Also a call to fun

62

4.9 Local Variables

• “The scope of a variable is the range of statements over
which it is visible”

• A variable not declared using var has global scope,
visible throughout the page, even if used inside a
function definition

• A variable declared with var outside a function definition
has global scope

• A variable declared with var inside a function definition
has local scope, visible only inside the function
definition

• If a global variable has the same name, it is hidden inside the function
definition

63

4.9 Parameters

• Parameters named in a function header are called formal
parameters

• Parameters used in a function call are called actual
parameters

• Parameters are passed by value
• For an object parameter, the reference is passed, so the function body

can actually change the object

• However, an assignment to the formal parameter will not change the
actual parameter

64

4.9 Parameter Passing Example

• The first assignment changes list in the caller

• The second assignment has no effect on the list object
in the caller

• Pass by reference can be simulated by passing an array
containing the value

function fun1(my_list) {

 var list2 = new Array(1, 3, 5);

 my_list[3] = 14;

 ...

 my_list = list2;

 ...

}

...

var list = new Array(2, 4, 6, 8)

fun1(list);

65

4.9 Parameter Checking

• JavaScript checks neither the type nor number of
parameters in a function call

• Formal parameters have no type specified

• Extra actual parameters are ignored (however, see below)

• If there are fewer actual parameters than formal parameters, the extra
formal parameters remain undefined

• This is typical of scripting languages

• A property array named arguments holds all of the
actual parameters, whether or not there are more of
them than there are formal parameters

• Example params.js illustrates this

66

4.9 The sort Method, Revisited

• A parameter can be passed to the sort method to specify
how to sort elements in an array

• The parameter is a function that takes two parameters

• The function returns a negative value to indicate the first parameter
should come before the second

• The function returns a positive value to indicate the first parameter
should come after the second

• The function returns 0 to indicate the first parameter and the second
parameter are equivalent as far as the ordering is concerned

• Example median.js illustrates the sort method

67

4.11 Constructors

• Constructors are functions that create an initialize
properties for new objects

• A constructor uses the keyword this in the body to
reference the object being initialized

• Object methods are properties that refer to functions
• A function to be used as a method may use the keyword this to refer to

the object for which it is acting

• Example car_constructor.html

68

4.12 Using Regular Expressions

• Regular expressions are used to specify patterns in
strings

• JavaScript provides two methods to use regular
expressions in pattern matching

• String methods

• RegExp objects (not covered in the text)

• A literal regular expression pattern is indicated by
enclosing the pattern in slashes

• The search method returns the position of a match, if
found, or -1 if no match was found

69

4.12 Example Using search

• This uses a pattern that matches the string ‘bits’

• The output of this code is as follows:
'bits' appears in position 3

var str = "Rabbits are furry";

var position = str.search(/bits/);

if (position > 0)

 document.write("'bits' appears in position",

 position, "
");

else

 document.write(

 "'bits' does not appear in str
");

70

4.12 Characters and Character-Classes

• Metacharacters have special meaning in regular
expressions
• \ | () [] { } ^ $ * + ? .

• These characters may be used literally by escaping them with \

• Other characters represent themselves

• A period matches any single character
• /f.r/ matches for and far and fir but not fr

• A character class matches one of a specified set of
characters

• [character set]

• List characters individually: [abcdef]

• Give a range of characters: [a-z]

• Beware of [A-z]

• ^ at the beginning negates the class

71

4.12 Predefined character classes

Name Equivalent Pattern Matches

\d [0-9] A digit

\D [^0-9] Not a digit

\w [A-Za-z_0-9] A word character (alphanumeric)

\W [^A-Za-z_0-9] Not a word character

\s [\r\t\n\f] A whitespace character

\S [^ \r\t\n\f] Not a whitespace character

72

4.12 Repeated Matches

• A pattern can be repeated a fixed number of times by
following it with a pair of curly braces enclosing a count

• A pattern can be repeated by following it with one of the
following special characters

• * indicates zero or more repetitions of the previous pattern

• + indicates one or more of the previous pattern

• ? indicates zero or one of the previous pattern

• Examples
• /\(\d{3}\)\d{3}-\d{4}/ might represent a telephone number

• /[$_a-zA-Z][$_a-zA-Z0-9]*/ matches identifiers

73

4.12 Anchors

• Anchors in regular expressions match positions rather
than characters

• Anchors are 0 width and may not take multiplicity modifiers

• Anchoring to the end of a string
• ^ at the beginning of a pattern matches the beginning of a string

• $ at the end of a pattern matches the end of a string

• The $ in /a$b/ matches a $ character

• Anchoring at a word boundary
• \b matches the position between a word character and a non-word

character or the beginning or the end of a string

• /\bthe\b/ will match ‘the’ but not ‘theatre’ and will also match ‘the’ in the
string ‘one of the best’

74

4.12 Pattern Modifiers

• Pattern modifiers are specified by characters that follow
the closing / of a pattern

• Modifiers modify the way a pattern is interpreted or used

• The x modifier causes whitespace in the pattern to be
ignored

• This allows better formatting of the pattern

• \s still retains its meaning

• The g modifier is explained in the following

75

4.12 Other Pattern Matching Methods

• The replace method takes a pattern parameter and a
string parameter

• The method replaces a match of the pattern in the target string with the
second parameter

• A g modifier on the pattern causes multiple replacements

• Parentheses can be used in patterns to mark sub-
patterns

• The pattern matching machinery will remember the parts of a matched
string that correspond to sub-patterns

• The match method takes one pattern parameter
• Without a g modifier, the return is an array of the match and

parameterized sub-matches

• With a g modifier, the return is an array of all matches

• The split method splits the object string using the
pattern to specify the split points

76

4.13 An Example

• forms_check.js

• Using javascript to check the validity of input data

• Note, a server program may need to check the data sent
to it since the validation can be bypassed in a number of
ways

77

4.14 Errors in Scripts

• JavaScript errors are detected by the browser

• Different browsers report this differently
• Firefox uses a special console

• Support for debugging is provided
• In IE 7, the debugger is part of the browser

• For Firefox 2, plug-ins are available

• These include Venkman and Firebug

