


Two Techniques

® 1 Hard Computing: deals with precise models where
accurate solutions are achieved quickly.

® > Soft Computing: deals with approximate models and
gives solutions to complex problems
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~—What is soft computing?

Soft computing is a term used in computer science to
refer to problems, whose solutions are unpredictable,
uncertain and between o and 1.

Soft computing is used in situations where problems
are unsolvable or too time consuming to solve with
current hardware.

Soft computing is the use of approximate calculations
to provide imprecise solutions to complex
computational real-life problems.
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The role model for soft computing is human mind.

The term soft computing was introduced in 1994 Prof.
Lotfi. A. Zadeh of University of California

Soft computing is based on techniques such as
artificial neural networks, fuzzy logic, genetic
algorithm, machine learning and expert systems



Components of Soft Computing




Why Soft Computing ?

The aim of Soft Computing is to exploit tolerance for
imprecision, uncertainty, approximate reasoning,
and partial truth in order to achieve close
resemblance with human-like decision making.

Soft Computing is a new multidisciplinary field, to
construct a new generation of Artificial
Intelligence, known as Computational Intelligence.

The main goal of Soft Computing is to develop
intelligent machines and to solve nonlinear and
mathematically unmodelled system problems
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Approximation: here the model features are similar to
the real ones, but not the same.

Uncertainity: here we are not sure that the features of
the model are the same as that of the real ones.

Imprecision: here the model features (quantities) are

not the same as that of the real ones, but close to
them.
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Hard Computing vs Soft Computing

1 Hard Computing: deals with precise models where
accurate solutions are achieved quickly.

Our conventional algorithms are termed as hard
computing.(greedy algorithm,dynamic programming
etc)

2 Soft Computing: deals with approximate models and
gives solutions to complex problems.



Hard Computing Soft Computing
Precise Models Approximate Models
.. Functional

: Traditional ; ) .

Symbolic ) Approximate Approximation
: Numerical ;

Logic ) Reasoning and

: Modeling and :
Reasoning Randomized

Search
Search
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Hard Computing Soft Computing

— Works well for simple problems

Requires precisely stated analytical
model

Needs full truth
Precision / Accuracy
Uses two valued logic

Requires more computation time and is
serial

Deterministic

Requires exact input data

Produces precise answers

Well suited for real-life problems

Tolerant to imprecision, approximation,
partial truth and uncertainty

Works with partial truth
Approximation
Can use multi valued logic

Requires less computation time and is
often parallel

Stochastic

Works with ambiguous/ noisy data

Canyield approximate answers



Human beings are capable of:

1 Taking decisions

2 Taking inferences from previous situation experienced
3 Achieving expertise in an area

4 Adapting to changing environment

5 Learning to do better

6 Showing social behavior / collective intelligence
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m Human can: _
take decisions L Fuzzy Logic
inferences from previous situation experienced | —
expertise in an area >— Neural Networks
adapt to changing environment 1 _
learn to do better o Evolutionary algorithms

[ social behavior of collective intelligence
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Advantages of Soft Computing

® First, it made solving nonlinear problems, in
which mathematical models are not available/
possible.

® Second, it introduced the human knowledge such
as cognition, recognition, understanding, learning,
and others into the fields of computing.

® This resulted in the possibility of constructing
intelligent systems.



Soft Computing Techniques

® FUZZY LOGIC
® ARTIFICIAL NEURAL NETWORK

® GENETIC ALGORITHMS
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Fuzzy Logic

A method of reasoning that resembles human
reasoning.

FL imitates the way of decision making in humans that

involves all intermediate possibilities between digital
values YES and NO(o and 1).

The human decision making includes a range of
possibilities between YES and NO such as:



CERTAINLYYES

POSSIBLY YES

CANNOT SAY

POSSIBLY NO

CERTAINLY NO
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Artificial Neural Network

It is an efficient information processing system which
resembles in characteristics with a biological neural
network.

It is implemented to model the human brain.

ANN is a collection of highy interconnected
processing elements called nodes or units or neurons

ANN can perform various tasks such as
pattern-matching and classification,optimization
function,approximation,vector quantization and data
clustering.



ANN

NNs are constructed and implemented to model the
human brain.

The main objective is to develop computational device
for modeling the brain to perform various tasks.

ANNs are implemented using high speed digital
computers which makes the simulation of neural
processes feasible.



ANNs possess large number of highly interconnected
processing elements called nodes or units or neurons.

Operates in parallel.

ANN s collective behavior is characterized by their,
1 Ability to learn
2 Recall

3 Generalize training patterns or data
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Genetic Algorithms

Genetic Algorithms (GAs) are search based algorithms
based on the concepts of natural selection and
genetics.

GAs are a subset of a much larger branch of
computation known as Evolutionary Computation.

GAs were developed by John Holland and his students
and colleagues at the University of Michigan.

Genetic Algorithm (GA) is a search-based
optimization technique based on the principles of
Genetics and Natural Selection.



~ Soft Computing- Applications

Handwritten Script Recognition.

Image Processing and Data Compression.
Automotive Systems and Manufacturing.
Soft computing based Architecture.
Decision Support Systems.

Power System Analysis.

Bioinformatics.

Investment and Trading.
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Artificial Neural Networks

NNs are constructed and implemented to model the
human brain.

The main objective is to develop computational device
for modeling the brain to perform various tasks.

ANNs are implemented using high speed digital
computers which makes the simulation of neural
processes feasible.
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Artificial Neural Networks

Artificial Neural Network- is a biologically inspired

network of artificial neurons configured to perform
specific tasks.

Neural network, in general, is a highly interconnected
network of billions of neurons with trillions of
interconnections between them.
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® A digital computer can do everything that an artificial
neural network can do. Why ANN?

® It allows to use very simple computational operations
(additions, multiplication and fundamental logic elements)
to solve complex, mathematically ill-defined problems,
nonlinear problems or stochastic problems.

® A conventional algorithm uses complex sets of equations,
and can be applied only to the given problem .

® ANN is highly parallel
® ANN is computationally and algorithmically very simple

® It has self-organizing feature to allow it to hold for a wide
range of problems.



A serial computer has a central processor. In this

system, computational steps are deterministic,
sequential.

Neural networks are not sequential or necessarily

deterministic. There are no central processor



Advantages of neural network

® Adaptive learning

® Self organization

® Real - time operation
® Fault tolerance
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Application scope of NN

Air traffic control

Animal behavior

Betting on stock market
Criminal sentencing
Data mining

Employee hiring

Fraud detection

Hand writing recognition



Medical diagonosis

Photos and fingerprint recognition
Recipes and chemical formulation
Scheduling of various transports
Traffic flow prediction

Voice recognition

Weather prediction
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Biological Neuron
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X
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Quiput

y

\ Ouiput y

Processing
element

Net mnpul, Yin = T1W1 + QU + ... + TpWp = D 1 q TiW;



Where i represents the i th processing element

Activation function is applied over it to calculate the
output

Weight represents the strength of synapse connecting
the input and output neuron

Weight can be positive or negative
Positive wt. corresponds to excitatory synapse
Negative wt. corresponds to inhibitory synapse



Biological neuron Artiticial neuron
Cell Neuron
Dendrites Weights or interconnections
Soma Net input
Axon Output




Comparison Between Biological Neuron and Artificial Neuron

( Brain Vs Computer)

Criteria Artificial neuron Biological neuron
Speed The cycle time of It is of few milli
execution in the ANN seconds.
is of few nanoseconds.
Processing | Can perform several Can perform massive
parallel operations parallel operations
simultaneously. simultaneously.
Size and | Size and complexity is | Total number of neurons
Complexity | based on the chosen is about 10! and the
application and the total number of
network designer. interconnections is
about 10'°. Complexity is
comparatively higher.




Contd...

Criteria Artificial neuron Biological neuron
Storage Stores in its contiguous | Stores the information
Capacity memory locations. in its interconnections

or in synapse.

Tolerance Has no fault tolerance | Possesses fault tolerant
capability

Control Yes No
Mechanism




Characteristics of ANN

It 1s a neurally implemented mathematical model.

K There exist a large number of highly interconnected process-
ing elements called neurons in an ANN.

gl The interconnections with their weighted linkages hold the
informative knowledge.

g3 The mput signals arrive at the processing elements through
connections and connecting weights.

1 The processing elements of the ANN have the ability to learn,
recall, and generalize. from the given data by suit- able
assignment or adjustment of weights

@A No single neuron carries specific information.
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Basic Models of ANN

The models of ANN are specified by 3 basic entities
The model’s synaptic inter connections

Training or learning rules adopted for updating and
adjusting the connection weights

Their activation function
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® Based on the connection pattern, Neural Networks are
classified as

1. Feed Forward Networks
2. Feed Back Networks or Recurrent Networks

® Based on the no of layers, Neural Networks are
classified as

1. Single Layer Networks
2. Multilayer Networks



Connections

m The ANN consists of highly interconnected processing
elements called neurons

m The arrangements of neurons to form layers and the connection
pattern formed within and between layers 1s called the network
architecture.

single layer feed forward network
multilayer feed forward network
single node with its own feedback
single layer recurrent network

multilayer recurrent network

12/22,



Input Quitput
layer layer

Input Output
neurons neurons







Single node with its own feedback

Input

Qutput

=it

Feedback

T~










® lateral Feedback Network

® Output of the neuron is directed back to itself or to
other neurons in the same layer

® Special type lateral feedback network is called on-
centre- off -surround or lateral inhibition structure



On center off surrounded or Lateral inhibition structure
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Special type of lateral f/b network

Each neuron receives two different types of input
Excitatory- Input from nearby processing elements
Inhibitory- Inputs from distant processing element
Open circle represents excitatory
Closed circle represents inhibitory



ANN (Recap)
ARTIFICIAL NEURAL NET

» Information-processing system.

» Neurons process the information.

» The signals are transmitted by means of connection links.
» The links possess an associated weight.

» The output signal is obtained by applying activations to the net
input.



ARTIFICIAL NEURAL NET

The figure shows a simple artificial neural net with two mput neurons
(X;, X;) and one output neuron (Y). The inter connectec welghts are
given by W, and W,




~Association of Artificial net with Biological net

Cell body

Summation
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Characteristics of Neural Networks

Ability to learn

Recall

Generalize training patterns or data

Adapt to changing environment

Process information in parallel and distributed manner
Fault tolerent



Learning

Learning or training 1s a process by which a NN adapts it-self to

a stimulus by making proper parameter adjustments, resulting in
m . .
the production of desired response.

=]t 1s a method of setting the appropriate weight values or by

changing the network structure
N

Two kinds of learning:

Parameter learning: It updates the connecting weights in a neural
net.

Structure learning: It focuses on the change 1n network structure.



Categories of Learning

Supervised learning
Al Unsupervised learning

Bl Reinforcement learning
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~ Supervised Learning

Learning with the help of a Supervisor/Teacher

Provide the network with a series of sample inputs and
compare the obtained the output with the expected
output.

The difference between these two o/p s is the error

Making use of the error network parameters are adjusted
so as to make the error minimum

This results in performance improvement

Eg: Perceptron Networks, Adaline, Madaline, BPN, RBFN
etc.



Supervised Learning

X 5 Neural Y
(Input) neh;:r k (Actual output)
A
Error Y
D-Y)
(, ; Error
S deaed Signal € D

generator (Desired output)




® Input vector along with the target vector is called
training pair

® During training, input is presented to the network
which results in an output vector (actual output
vector- Y)

® Actual output is compared with Desired output-D
® Error is calculated ( D-Y)

® Error is used for weight adjustment

® Repeat the process until the error is minimum
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® Learning without the help of a teacher/ supervisor
® Output is not known

® Error information can not be used to improve network
performance

® Input vectors of similar type are grouped without the
use of training data to form clusters/groups/class

® When a new input pattern is applied to NN , it gives an
output response indicating the class to which it
belongs



Unsupervised Learning

X

(Input)

ANN

W

If

>
(Actual output)



® The network learns on its own by discovering t!

patterns , regularities, features or categories from the

e

input data and relations for the input data over the

output

® While discovering these features, the network
undergoes change in its parameter called Self

Organization
® Eg: Hebbian learning , Competitive laerning
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Reinforcement Learning

It is a form of supervised learning

In SL correct target outputs are known for each input

In RL less information is available about target output
It tells whether the output is correct or not

Reward- for correct output

Penalty - for wrong output

SL- exact information about the output is available

RIL- only critic information about the output is available



Reinforcement Learning

e
(Input)

Neural
network

W

Error
signals

A

Y

Error
Signal
generator

<€

I/'

>
(Actual output)

R

(Reinforcement
Signal)



Classification of Learning Algorithms

Neural Network Learning
algorithms
T

v \ v
— Supervised Lea@ qupewisb Reinforced Learning
“~—___ (Eror based) Leaming (Output based
& | i
~~ Ermor Correction l
| B

Al

7 Least :
C_toon e (_Bactoropagan




_ Gradient descent learning

Gradient Descent learning :
This learning technique is based on the minimization of error
E defined in terms of weights and the activation function of
the network.

Also, it is required that the activation function employed by the
network is differentiable, as the weight update is dependent on
the gradient of the error E .

@ Thus, if AWijdenoted the weight update of the link connecting the
I-th and j-th neuron of the two neighboring layers then
9E
D oW,
where n is the learning rate parameter anda%:___
grerlient with reference to the weight Wij
The least mean square and back propagation are two variations

of this learning technique.




" Stochastictearning =

Stochastic learning

In this method, weights are adjusted in a probabilistic fashion.
Simulated annealing is an example of such learning (proposed
by Boltzmann and Cauch)



= learning
Hebbian learning was developed Donald Hebb in 1949

This learning is based on correlative weight adjustment. This is,
in fact, the learning technique inspired by biology.

@ Here, the input-output pattern pairs (x., y;) are associated with
the weight matrix W . W is also known as the correlation matrix.

This matrix is computed as follows.
W= siuXxY
where Y/ is the transpose of the associated vector Y,
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= Competitive learning

Competitive learning

In this learning method, those neurons which responds strongly
to input stimuli have their weights updated.

When an input pattern is presented, all neurons in the layer
compete and the winning neuron undergoes weight

adjustment.

This is why it is called a Winner-takes-all strategy.



Classification o

D

LEARNING METHOD

Cradient descent — Hebbian — (ompetitive Stochastic
 Single-laver ADALINE AM LVQ [
& | feedforward Hopfield Hopfield  SOFM
= Perceptron |
) ' SN
W - Multlayer CCN Neocognitron | — —
= - feedforward MLFF
e 3 RBF |
x " Recurrent RNN BAM ART | Boltzmann machine
newral network BSB " Cauchy machine
Hopfield |
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ADAILINE (Adapuve Linear Neural Element)
ART (Adaptive Resonance Theory)

AM (Associative Memory)
BAM (Bidirectional Associative Memory)

Boltzmann Machine

BSB (Brain-State-in-a-Box)

CCN (Cascade Correlation)

Clauchy Machine

CPN (Counter Propagation Network)
Hamming Network

Hopfield Network

LVQ (Learning Vector Quantization)

MADAILINE (Many ADAILINE)
MILFF (Multilayer Feedforward Network)

Neocognitron
Perceptron

RBF (Radial Basis Funcuon)

RNN (Recurrent Neural Network)
SOFM (Self-orgamzing Feature Map)



ctivation Functions

©® Mathematical equations that determine the output of NN
® It decides whether a neuron is fired( activated) or not
® Two types 1. Linear 2. Non-linear

® Activation functions

1. Identity Function

Step Function--- Binary & Bipolar

Sigmoid Function--- Binary & Bipolar

Hyperbolic Tangent Function

Ramp Function etc.

Binary step function is known as threshold function

or Heaviside function

BA W N



/\/

dentity Function
The identity function is given by

fix)=x




N

Step Function

Threshold activation function

f(net)

1

(a) unipolar

net
f(x) =o0ifx<e

=1ifx>e



ipolar Step Function

f(x)

=-1ifx<e
=1ifx > o

-
1
0.8
DAt
-
<
0.6
U
-
0.4-
.
0.2-
.

0 & & 4 2 | 2
0.24
0.4
0.6




Binary Sigmoid Activation Function

The sigmoid activation function

L
flx )= X

]l +e

S(x )

T

p X
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Bipolar Sigmoid Function

_ 2 :
® It is given by Hm )= 1+ 7™ :

® It is closely related to hyperbolic tangent function



adial Basis Functions *

® A radial basis function is simply a

Gaussian, 5
(—ax)

fix)=e

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv



0 ACTIVATION LEVEL — DISCRETE OR
CONTINUOUS

0 HARD LIMIT FUCNTION (DISCRETE)
Binary Activation function
Bipolar activation function
Identity function

0 SIGMOIDAL ACTIVATION FUNCTION
(CONTINUOUS)
Binary Sigmoidal activation function
Bipolar Sigmoidal activation function



—  ACTIVATION FUNCTIONS ( Recap)

A
)

/ Activation functions:
’ ' (A) Identity

&5 (B) Binary step

% (C) Bipolar step

(D) Binary sigmoidal

(E) Bipolar sigmoidal

(F) Ramp




Iportant Terminologies of ANN

® Weights

® Bias

® Threshold

@® Learning Rate

® Momentum Factor
® Vigilance Parameter



~Common notations used in NN

x;;  Activation of unit X;, input signal,

i Activation of unit Y}, y; = £(y;)

wj: Weight on connection from unit X; to unit ¥,

bi:  Biasacting on unit ;. Bias has a constant activation of 1.
W:  Weight matrix, W = {w;}

Net input to unit Y; given by Vi = bj+ Y  Xitjj

lIx||: Norm of magnitude vector X.
6;:  Threshold for activation of neuron Y.

S:  Training input vector, S = (51, . . . s Riisoas 85)
T Training output vector, T = (1, ..., Gii st 30
X:  Inputvector, X = (x1,...,x,..., %)

Awj: Change in weights given by Awy = wj;(new) — w;;(old)
@:  Learning rate; it controls the amount of weight adjustment at each step of training,



McCulloch Pitts Neuron

g Usually called as M P neuron. Connected
g 0y directed weighted paths. Activation of

g & M P neuron is binary.

m The weights associated with the communication links may be
excitatory(weight is positive) or inhibitory(weight is negative).

The threshold plays a major role in the M P neuron.
r



Neurons are sparsely and randomly connected

Firing state is binary (1 = firing, 0 = not firing)

All but one neuron are excitatory (tend to increase voltage of other
cells)

= One inhibitory neuron connects to all other neurons
= It functions to regulate network activity (prevent too many

firings)



McCulloch Pitts Neuron
/’_\' :

Architecture

S

Rg

'\n+1

R
ntm




Firing of the neuron‘is basedon,the threshold.
ivation function is applied on | o get the

output which is y= f(yin).
Activation function is defined as

| ‘ ir _y"” P ('
f Win) = ‘() U Yy = 0
Threshold is obtained by satisfying the following condition
0 > nw — p

Neuron will fire if it receives k or more excitatory input but no
inhibitory input where,

kw >0 > (k— 1w



Linear Separability

Linear separability is the concept wherein the separation of the
input space into regions is based on whether the network response

IS positive or negative.

Consider a network having
positive response in the first
quadrant and negative response
in all other quadrants (AND

function) with either binary or

bipolar data, then the decision
line is drawn separating the
positive response region from
the negative response region.

(Negative

X

A2

(Positive response region)
-+

response
region)
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single layer NN




__—Generally, the net input calculated to the output unit is

The decision boundary is determined by the equation

The net input for the network in Flg shown with bias is

The decision boundary is determined by the equation




Requirement for a positive response of the net if bias is used

If threshold is used, Requirement for a positive response is




The separating line equation will be




Donald Hebb stated in 1949 that in the brain, the learning
is performed by the change in the synaptic gap. Hebb
explained it:

“When an axon of cell A is near enough to excite cell B, and
repeatedly or permanently takes place in firing it, some
growth process or metabolic change takes place in one or
both the cells such that A’s efficiency, as one of the cells
firing B, is increased.”



1 The weights between neurons whose activities

are positively correlated are increased:

dw.. 2
t‘J ~ correlation(x , x )

J

1 Associative memory is produced automatically

1 The Hebb rule can be used for pattern
association, pattern categorization, pattern
classification and over a range of other areas.



m The weight vector is found to increase proportionally to the
product of the input and learning signal(learning signal is equal
to the neurons output).

m In Hebb learning, if the two interconnected neurons are on
simultaneously, then the weight associated with these neu- rons
can be increased by the modification made in their weight.

The weight update is given by,

= w.(new)=w.(old)+xy

The Hebb rule is more suited for bipolar data than binary data.
I



Flowchart of Hebb training algorithm

|

Initialize weights

No

Activate input units
X =8
L 1

!

Activate output units
y=ti

!

ﬁ"eight update
w;(new) = w;(old) + x;y

!

Bias update
b(new) = b(old) + y

&

Stop




Training Algorithm

m Step 0 : Initialize the weights.
w.=0fori=1ton

m Step [ : Steps 2 4 have to be performed for each input training
vector and target output pair, s : 7.

m Step 2 : Input units activations are set.
x=sfori=1ton Step 3:

m Output units activations are set.y = ¢

B Step 4 : Weight adjustments and bias adjustments are per- formed.

w.(new)=w.(old)+xy
b(new )= b(old ) +y Change
in weight, w = xy

22,/22,



Problems

1. For the network shown in Figure 1, calculate the

net input to the output neuron.

0.2
PL@ M/L '
i e -0.3
,___.@

Figure 1 Neurnl net.




Solution: The given NN consists of 3 i/p neurons and 1 o/p neuron
.The i/p s and weights are

[x1,x2,x3] = [0.3,0.5,0.6]
[ZU], w, w3] = [0'21 Ola —03]

The net input can be calculated as

Yin = X]W) + X2w) + x3w3
=03x024+05x0.1+06 x (—=0.3)
=0.06+0.05-0.18 = —-0.07



/

Calculate the net input for the network shown in
Figure 2 with bias included in the network.

02
b(x') ‘

09 () AH

0.8 07

(%)

Flgure 2 Simple neural net.



olution: The given NN consists of 2 i/p neurons, bias
and 1 o/p neuron .The i/p s and weights are given as

xix2| = 10.2,0.6] and the weights are (w), w)] =
0.3, 0.7]. Since the bias is included 4 = 0.45 and

dlas mnput xy 1s equal to 1, the net inpuc is caleu-
atcd A8

Yin = b+ xy0) + xpw)
=045402%x0340.6x 0.7
= 0,454 0.06 4 0.42 = 0.93

Theretore y,,, = 0.93 is the net input.
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3. Obtain the output of the neuron Y for the net:

work shown in Figure 3 using activation func
tions as: (1) binary sigmondal and (1) bipolat

sigmoidal.
03 - \
X, 0
& 038
"-——H Xo ,L y
//
02

04

Figure 3 Neural ner.



on: The given NN consists o rons, bias
and 1 o/p neuron .The i/p s and weights are given as

The inpurs
[xl - X%, ;\‘3] = [08. 06, 04] and

[u»'l.:c:.u{x] = [0.1,0.3, —0.2] wi
Lits input is always 1.

are given 25
the weighs are
th biaS /):035



[n = 3, because only
3 input neurons are given]
= b+ xywy + xwy + x3w3
=0.35+08x0.14+0.6x0.3
+0.4 x (—=0.2)
=0.354+0.08 +0.18 —0.08 = 0.53



For binary sigmoidal activation function,

1 1
Pl S T = 053
For bipolar sigmoidal activation function,
2 2
= ( in) — ] = s

= 0.259
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4. Implement AND function using
McCulloch-Pitts Neuron ( Take Binary data)

Solution: Consider the truth table tor AND tunce

R ¢

{ Table 1)
Table 1
\ L5, Y
1 | |
1 0 0
J l 0
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For each input pair, calculate net input yin
Assume the weights be wl=w2=1

LD v = +xup=1x1+1xl =
(lsO). -V"‘z".“"'l‘?‘.\‘;u‘::lx 1+0Xl=l
Q.1 yo =50y +xur=0x1+1x1 = 1

O0.0L - yiw =y +0uy=0x1+0x1 =0



wo=1

Fig
ure 4 Necural net
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For an AND funcrion, the output is high if both the
inputs are high. For this condition, the net input is
calculated as 2. Hence, based on this net input, the
threshold is set, i.e. if the threshold value is greater
than or equal to 2 then the neuron fires, else it does
not fire. So the threshold value is setequal to 2(# = 2).

This can also be obrained by

62 nw-—p



P ,,,,,, R — %
= Here, n = 2, w = 1 (excitatory weights) and p = 0

(no inhibitory weights). Substituting these values in
the above-mentioned equation we get

>22x1-0=2022

Thus, the outpur of neuron Y can be written as

1 if Yin 2 2
)' =_f(]m) - 0 it‘ ]:n < 2

where “2” represents the threshold value.



5. Imple ion using McCulloch-Pi
euron ( Take Binary data)

Solution: The truth table for XOR function is given

in ITable 3.
Table 3
X1 X2 y
O O ()
O 1 1
1 (@) 1
1 1 (0)

In this case, the output is “ON” for only odd number
of 1’s. For the rest it is “OFE>

be represented by simple and si
1s represented as

Y = x1x2 + x‘1x2
Yy =21 + =2
where
Z] = x1X2 (function 1)

Z2 = X1X2 (function 2)
vy = 21 (OR)z> (function 3)



yer net is not sufficient to repres
Snrte
th
S

/ A single-layer "
funcrion. An intermediate layver is necessary

Figure 6 Neural net for XOR funcrtion (the

weights
shown are obrained afrer analysis).

- First function (z1 = x1x2): The truth table fo,
function 2z is shown 1n Table 4.

Table 4

x1 x2 <1
O O 0O
O 1 O
1 O 1
1 1 O

The net representation is given as
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~— (Case 1: Assume both weights as excitatory, 1.¢.
wiy = wp) = |

Calculate the net inputs. For inputs,

(0,0),21,',,=0Xl+0>(l=0
0,1), 21 =0x 1+ 1 x1=1
(1,0), 21, =1 x 1 +0x 1 =1
(1,1), 21, =1 x14+1x1=2

Hence, it is not possible to obtain function Zi

using these weights.



: = . : d tne
Case 2: Assume one weight as excitatory an

other as inhibitory, i.e.,




Fas2 * xpeme,

Figure s .., ral

nct for 7,
Calculate the net nputs. For INputs

(0- O)- z'l’l

[
-
X
4
Q
X
|
l
-

(O.I).z|,,,=0xl+lx—l
(l,O).Z],’,,z 1 >« ] 4+ 0 x —}
(1, 1), zy;, = 1 x 14+1x—1=0¢0

On the basis of this calculared ner Inpue, it is
possible to ger the required ourpur. Hence.

w1y = 1
w2

€ > 1 for the Z1 neuron




/

_* Second function (z, = x1%2): The truth table fo,
function z; is shown in Table 5.

X1 X2 Z)

0 0 0
0 1 1
1 0 0
| 1 0
_—

The net representation is given as follows.



w2 = wy =1

Now calculate the net inputs. For the inputs

(0,0),22,, =0x 140 x 1
(0,1), 22, =0x 141 x|
(1,0),23,, =1 X140 x|
(1,1), 22, =1 x 141 x|

Hence, it is not possible to obtain
using these weights.

=0
= ]
= ]

2

tunction z;



Case 2: Assume one weight as excitatory and the

other as inhibirtory, i.e.,

=

w2 = —1. wy =1

Now calculate the net inputs. For the inputs

(0,0),22,, =0x —-140x1=0
(0, l)» Z2in
(]’O)a Z2in

(l ) 1)’ Z2in

=0x —1+4+1x1=1
=]l x—=-140x1=-—1
=] x —=1+4+1x 1 0

Thus, based on this calculated net input, it is
possible to get the required output, i.e.,

w2

w2
f)

WV

—]
I

I  for the Z.) neuron

\



Third function (y = z; OR z;,): The truth table

for this function is shown in Table 6.

Table 6

X ) y Z| 2
0 f) () 0 ()
0 | 1 () |

] () J | ()
| | () () ()

Here the net input is calculated using

Yin = 21V| + 2307



vy =y =1}

Now calculate the net input. For inputs

because for 2 = 1 and x

25 = [}

(0,0), 4 =0x14+0x1=0
O0), Y =07 14 1 51 =1
(L0, Yip=1x140x1=
(L1, jn =02 140x1=0

L

Yoy =

() and



N

Setting a threshold of 6 > 1, = v; = 1, which
implies that the net is recognized. Therefore, the

analysis is made for XOR function using M-P
neurons. Thus for XOR function, the weights are
obtained as

w2, =1 (excitatory)

wi |
wi = wy = —1 (inhibitory)

8

|
3

=1 (excitatory)



Figure 9 Necural net for Y (Z, OR 25).
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Design a Hebb net to implement logical AND G

—— function (use bipolar inputs and rargets).

Solution: The training data for the AND funcrion is
given in Table 9.

Table 9
Inputs Target
X1 x b y
1 I 1 1
1 —1 1 -
—1 1 1 —]
—1 —1 1 — 1

The network is trained using the Hebb nerwork train-
ing algorithm discussed in Section 2.7.3. Initially the
weights and bias are set to zero, i.e.,

wy =t = =0



N

o First input [x] x2 6] = [111] and target = 1
i.e., y=1]: Setting the initial weights as old
weights and applying the Hebb rule, we get

w;(new) = w;(old) + x;y

wi(new) = wy(old) + 1y =0+ 1 x|

wy(new) = wy(old) + xy =0+ 1 x
b(new) = blold) +y=0+1 =1




sy HBEEERR
~ The weights calculated above are the final weights

that are obtained after presenting the first input.
These weights are used as the initial weights when
the second input pattern is presented. The weight
change here is Aw,; = x;y. Hence weight changes
relating to the first input are

-

Aw,
Aw) =xy=1x1=]
Ab=y=1

xiy=1x1




m/

~ Second input  [x) % 6] =[1 =11] and
}'2"'- -1 ”‘)C iniml Or OI(J W('iff}"c hrfr(; 1re t'hr?
final (new) weights obtained by presenting t
first input pattern, 1.e.,

lw. ) h| = [! | H
T he weight change here s

Awy=xjiy=1 x -1 = -]
Awy =x3y=—-1x -1 =1
Ap=y=-|



/M‘"

T'he new weights here are

wy(new) = wlold) + Aw, =1 —-1=10

w) (new) = wy(old) + Aw) =1+ 1 =2
b (new) = bold) + Ab=1-1=010

Similarly, by presenting the third and fourth
input patterns, the new weights can be calculated.
Table 10 shows the values of weights for all inputs.



N

Table 10
Inputs  Weight changes  Weights
xl x2 6 y Awy Awy, Ab wy wy b

(0 0 0)

I 11 1 1 I 1 1 1
1 =11 -1 -1 1 -1 0
-1 11 -1 ] -1 -1 1
-1 =11 -1 l ] -1 2




== = /

~— The separating line equation is given by

—w b
X) = >N] ™
W) W

For all inputs, use the final weights obrained
tor cach input to obrain the separating line.
For the first inpur [1 1 1], the separating line is
given by

X2= —X| — =~ D x=—x — 1



(A) First input



Similarly, for the second inpur [1 =1 1], the
separating line is

= — 5 gy = )
X5 2x| ,)-‘-‘)\2

e



X=0
- e
- —p
X,

(—1' -1) (1' _1)

\

(B) Second input




/ i
For the third input [—1 1 1], it is

—1 1
T e L T

B 1 ]

Finally, for the fourth inpur [—] _ 1] .
. the

xparatinglincis
-2 2
= - e — = ==y L
x2 3 1 P X2 X — 1]



(-1. “1) (1, _1)

Y
(C) Third and fourth inputs






targets

Solution: The training pair for the OR funcrion
given in Table 11. ncuon s

Hebb net for OR function‘using bipolar inputs d

Table 11

B
Inputs Target

X1 . b T

1 ] 1
1 ] ]
—1 1 ,
- 1 1

Pt ) p—

l
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_— Initially the weights and bias are set 10 zero. Le.,

wy=w)y =b=
I

nputs Weight changes Weights
X1 X by Aw Awy Ab w; w, b
0 0 0
1 1 1 1 1 1 1 1 1 1
1 —1 1 1 1 -1 1 2 0 2
—1 1 1 1 -1 1 1 1 1 3
1_: 1 1 -1 1 | IIZ 2 2

\



M

~ Using the final weights, the boundary line equation

can be obtained. The separatng line equation is

_—w b ~2 ‘.
X) wxl X]— —=—x; —1
2 w) 2 2

The Final weights are wl=2, w2=2,b=-2



(1,1)
4
>
x‘
+
(1' —1)
X=—X -1




Hebb netfo\rOR function




WW

targets

Solution: The training patterns for an XOR function
are shown in Table 13.

Table 13
Inputs  Target

x1 x2 by

e N

"
-~ >
A




/
/IU]

w) = b = ()

Inputs Weight changes Weights

X1

xzbyAwlszAbwlwz b
(000)




— (No decision
xl boundary ||ne)

(-1. ‘1) (1' _.1)




MODULE 2

® Perceptron Networks
® ADALINE
® Back Propagation Networks



Perceptron Networks

Characteristics

Perceptron network consists of 3 units: sensory unit (input
unit), associator unit (hidden unit), and response unit (output
unit).

Sensory units are connected to associator units with fixed
weights having values 1,0 or -1 .

The binary activation function is used in sensory unit and
assoclator unit.

The response unit has an activation of 1,0 or -1 .



/
.

m The output of the perceptron network is given by;

=7 |

where f (y. ) is activation function and is defined as;
/‘ .
| If Vin 2 0

-
Oif -o<yp<eo

Jq :g/ﬁ 091_’1) — .<

-Lif y= e
N—

m The perceptron learning rule is used in the weight
updation between associator unit and response unit.

m ['he error calculation is based on the comparison of the
val- ues of targets with those of the calculated outputs.



The weights will be adjusted on the basis of the learning rule if
an error has occurred for a particular training pattern.

w. (new ) =w, (old ) +atx,
b(new ) = b(old ) + at
where,

t= target value(+lor 1)
o= learning rate

If no error occurs, there is no weight updation and training
process may be stopped



Figure : A perceptron network with its three
units




Learning

m A finite n number of input training vectors with their
asso- ciated target values; x(n) and t(n).

m The output y is obtained on

the basis of the net input cal-

culated and activation function being applied over the

net input.

=1 6 ==

i . ,
Ilf Vin = ©

> J—
01, (9_}1.,1_6’

-1if y<e

< in
\



m The weight updation is as follows:
If y# t then,

w;(new) = w;(old) + atz;

else, we have

w(new) = w(old)



/—\ I .
= Perceptron W’Rﬁ@

Convergence Theorem

“If there is a weight vector W, such that f(x (n) W )= t(n),
then for any starting vector wi, the perceptron learning
rule will converge to a weight vector that gives the
correct response for all training patterns, and this
learning takes place within a finite number of steps
provided that the solution exists”



Architecture

Figure : Single classification perceptron
network



Perceptron has sensory, associator and response unit

In this architecture only the associator and response
unit is shown and sensory unit is hidden because only
the weights between the associator and the response
unit are adjusted

Input layer consists of input neurons from Xi...Xi...Xn
There always exist a common bias of 1
This is a single layer network
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C ' (123 - 2423 Wh 1 3

B o B et

o

>

—

Cacha,& M W?dj
Apply a.e('f\m,@fm,, obtatn =5 (Mer)

Ne
Ty -
(res | ave (need) *wrCoc&)\
A (—eew) = Welold) oot L (veew) = b Lotd)
A (»w,w\ - bCold) +oxt




ceptron Training Algorithm for Single Output Class

m Step O0: Initialize the weights and bias. Also, initialize the
learning rate,a(0 < a < 1).

m Step 1: Perform steps 2-6 until the final stopping condition
1s false.

m Step 2: Perform steps 3-5 for each training pair indicated

o) O e
m Step 3: The input layer containing input unit is applied
with identity activation functions:

T = Si



m Step 4: Calculate the output of the network.
Yin = b 8 0 Zz—l Ty Wi

lf Yin =
0if -o<y<o

y=16,) =5

CI if ¥y 0




m Step 5: Weight and bias adjustment:

If y # t then,
w;(new) = w;(old) + atz;
b(new) = b(old) + at

else, we have

w(new) = w(old)
b(new) = b(old)
m Step 6: Train the network until there is no weight change.
Otherwise, start again from Step 2.




ceptron Training Algorithm for Multiple Output Class

m Step 0: Initialize the weights and bias. Also, initialize the
learning rate,a(0 < a < 1).

m Step 1: Perform steps 2-6 until the final stopping condition
1s false.

m Step 2: Perform steps 3-5 for each training pair indicated
by, 5: &

m Step 3: The input layer containing input unit is applied

with identity activation functions:

T = S



m Step 4: Calculate the output of the network.

Yiii = b5+ iy Ty
=1 Og) = 0if o<y <6

-1if y,50



P

m Step 5: Make adjustment in weight and bias for 7 = 1 to

mand 1= 1ton
If t; # y; then ,

wij(new) = wy;(old) + at;z;
bj(new) = b;j(old) + at;

else, we have

wy; (new) = w;;(old)
bj(new) = b;(old)
m Step 6: Train the network until there is no weight change.
Otherwise, start again from Step 2.




Perceptron Network Testing Algorithm

m Step 0: Initial weights is equal to the final weights obtained
during training.

m Step 1: For each input vector X to be classified, perform
Steps 2-3.

m Step 2: Set activations of the input unit.

m Step 3: Obtain the response of output unit.

Yin = D i1 TiW;
o
Ilf Yin: = O

0if -o<y<eo
¥ =.f(‘.in) i f Yir=

1Y y=e



ogic

JHumans are more efficient in dealing with fuzzy data
than computers (e.g crossing a busy road).

JFuzzy logic is used to convey the human capability of
handling fuzzy information to the computer

It 1s a mathematical tool to capture and handle the
fuzzy data that 1s used in the natural language



/
/—\ l.//
= Why Fuzzy Logic
In the real word there exists much fuzzy knowledge, that
is, knowledge which is vague, imprecise, uncertain,
ambiguous, inexact, or probabilistic in nature.

Human can use such information because the human
thinking and reasoning frequently involve fuzzy
information, possibly originating from inherently inexact
human concepts and matching of similar rather than
identical experience.

The computing system, based upon classical set theory
and two-valued logic, cannot give answers to some
questions as a human does, because they do not have
completely true answers.



Significance of Precision in the Real World

A 400 kg mass is ' = '
approaching your
head at 50 m/sec

Look out!

I i

Precise man Fuzzy man




How are you going to park a car?

I's eeeaasy!
Just move slowly
¥) | backandavoid
any obstacles

You have to switch to
reverse, then push an
B )| accelerator for 3 minutes
and 46 seconds and keep a

speed of 20km/hr and move
0 3m back after thattry ...




/U/

/Types of uncertainties and its modeling

® Stochastic uncertainties:
(E.g the probability of hitting the target is 0.65)
® lexical uncertainties:
Examples include the expressions like
® Healthy man.

® Depressed patient.
® Hot weather.

@® Stochastic uncertainties are modeled by
probabilities

® Lexical uncertainties are modeled by fuzzy sets



Uncertainty can be caused by imprecision in

measurement due to imprecision of tools or other

factors. Uncertainty can also be caused by vagueness in
the language objects and situations.

162



FL maps an mnput space to an output space using a list of 1f-then
rules

A Specific Example
The General Case
Input —> Output
Input —»Output
+ If is poor is less
If is good is average
Rules If is excellent is generous
Input Output ; .
Terms Terms S,eerce - 3 tlp
(interpreted as) (1s assigned to be )
poor less
good average
excellent generous




Linguistic Rules,Variables and values

Rules
If service is poor then is less
If service is good then tip is average
If service is excellent then tip is generous

===

Input Linguistic Cutp Linguistic
Values Linguistic Values

Linguistic _
variable

variable

Linguistic Rules of fuzzy systems are the laws it execute

Linguistic variables brings a concept from our everyday language

Linguistic values describe the characteristic of the Linguistic variables




= History of Fuzzy Logic

Fuzzy set thory was introduced by Professor Lotfi
Zadeh (USA) in 1965 as an extension of the classical set
thory

1972 First working group on fuzzy systems in Japan by

Toshiro Terano : \

1973 A paper on fuzzy algorithms by Zadeh (USA

1974 Steam engine control by Ebrah?m Mamdani (UK)

;E 1o many events, inventions and projects to mention
ill 1901

iAx ter 1991 fUZéy technology came out of scientific
aboratofies and’became an1hdustrial tool.

In the last two, decades, the fuzzy sets theory has
est hsllﬁe(} 1tself aﬁ a new gletlilogof,o%y fl(;r Za ing
with any sort of ambiguity and uncertainty.



/—\
* Fuzzy Sets

A classical set X is a collection of definite, distinguishable
objects of our intuition that can be treated as a whole. The
objects are the members of X

A crisp (classical) set is a set for which each value is either
included or not included in the set.

For a fuzzy set, every value has a membership value, and so
is a member to some extent.

The membership value defines the extent to which a
variable is a member of a fuzzy set.

The membership value is from o (not at all a member of the
set) to 1.



Milk
Water

Cocacola

Spite

Crisp answer

Crisp

Is the liquid
colorless?




Fuzzy answer

Absolutel
\/
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~— Fuzzy logic vs. Cri |

Score
99
Extremely honest

Aaron
Sreehari

75
Merlin

i 55

Abhishek

person




w 4 CcCc v Zz -

cept of fu

Fuzzy element(s)

l

A

A 4

Fuzzy set(s)

\ 4

A 4

Fuzzy rule(s)

Fuzzy
implication(s)

(Inferences)

A 4

Fuzzy system

\ 4

nw - c v-+HCoOo
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understand the concept of fuzzy set it is better, if we first clear
our idea of crisp set.

X = The entire population of India.

H = All Hindu population = { h1, h > h e hL}

M = All Muslim population = { m,, m,, m,, ..., m,, }
C = All Christian population = { e ¢ CN}

Universe of discourse™ X

Here, All are the sets of finite numbers of

individuals. Such a set is called crisp set.



”

Refreshing Crisp sets



_— Example-of—afuzzyset —=

/ V

Let us discuss about fuzzy set.

X = All students in EC360 Soft computing

S = All Good students.

S=1{(s,g9)| s € X} and g(s) is a measurement of goodness of
Htedent s.

Example:

S = { (Aaron, 0.8), (Merlin, 0.7), (Sreehari, 0.4), (Sangeeth, 0.9) }
etc.



Fuzzy Set vs

F1S

Crisp set

Fuzzy Set

et nee

1. F=(s,u)|s €& Xand u(s) is
the

degree of s.

2. It is a collection of elements.

2. It is collection of ordered pairs.

3. Inclusion of an element s € X
mto S is crisp, that 1s, has strict
boundary yes or no.

3. Inclusion of an el-
ement s € X into F is fuzzy, that is,

if present, then with a degree of
membership.




P

g Fuzzy set Representation

® A fuzzy set can be expressed as a set of ordered pairs

A =x, 1, (x))]x € X5

totally characterized by
function (MF).

h element of X to a me

value) beteewn 0 and c




Alternate Notation

® A fuzzy set A can be alternatively denoted as follows:

X is discrete .> = Z‘UA(XZ')/XZ'

x;eX

X is continuous HEE > A= IMA(X) /%
X

*Note that X and integral signs stand for the union of
membership grades; “/” stands for a marker and does
not imply division.

*Crisp Sets < Fuzzy Sets or in other words, Crisp Sets are
Special cases of Fuzzy Sets



N

Example of Fuzzy set Representation

® A={ (x1,0.8), (x2, 0.3), (x3, 0.1), (x4, 0.9) }
® Can be represented in another way as

® A=0.8/x1+ 0.3/x2 + 0.1/X3 + 0.9/Xx4



N

Example (Discrete Universe)

U = {1, 2, 3, 4, 5, 6, 7, 8} _ #courses a student may

take in a semester.

(1L,0.1) (2,03) (3,08) (41|  appropriate
(5,09) (6,05) (7902) (8901) # courses taken

Alternative Representation:

A==t e e E O e e e (e e



Fuzzy Sets

)Sets with fuzzy boundaries

A = Set of tall people
Crisp set A Fuzzy set A

160 cm 160 cir:



Example: Cours aluation'in a'crisp.way

EX = Marks = 90
A = 80 £ Marks <

8
90 B =70 =< Marks
< 80 C =60 <
Marks < 70 D = 50
< Marks < 60 P =
35 < Marks < 50 F
= Marks < 35



Example: Course evaluation in a crisp way

FP D C B A

35 50 60 70 80 90 100



Example: Course evaluation in a fuzzy way

35 50 60 70 80 90 100



raphical Representation
Union = Maximum, Intersection=Minimum

A = =
£ A
2 3
28 ' o\ i 1
o 5 8 X <
B o . o X
51 E'U
S 3
2 g _ o 0 5 8 X
ol 4 ¥
AlB AUB
A

—>

membership
degree
| 3
I
membership
degree
—
1
v

o
NN
(&3]
oo
>

o
NN
(6}
o
X




Some Definitions

= o-cut, strong o -cut
® Support 5

® Core
® Normality

® Convexity
® Bandwidth

: ® Symetricit
® Crossover points y T

® Fuzzy singleton

184






® Support

® The support S(A) of a fuzzy set A is the crisp set
of all the elements of the universal set (UOD) for
which membership function has non-zero value

S(A)={u e U/p,(u)>0}




o — cut (or a level) set

® The set of elements that belong to the fuzzy set
A at least to the degree a is called the a-level-set

or a-cut-set - {XIuA (x) > a}

® Strongacut 4y = Wl (1)1 af

An a-cut set is crisp or fuzzy?



Crossover point

® The element of the universal set, for which the
membership function has the value of 0.5, is
called a crossover point.

Crossover(A) = {x H4(x)= 0.5}




® Is the set of all elements x in X that belong to
the fuzzy set A such that 1, (X)=1:

Core(A) = {x|p ((x) =1




Height of a fuzzy set

The height of a fuzzy set A, hgt(A) is given by a

supremum of the membership function over all u€U
hgt(A) = sup, p,(u)

(Supremum in this definition means the highest possible

(or almost possible) degree.)

Normality

A fuzzy set is normal if its core is nonempty. In other
words, we can always find a point x ¢ X such that

p, (x)=1




/
Convexity : Afuzzy set A is convex if and only if for any x, and x, €

X
andany A € [0, 1]
:UA (AX»] T (1 _A)Xz) = min(:UA(X»])’ :UA(Xz))

Note :
e Ais convex if all its g- level sets are convex.

o Convexity-tAr)==> A _is composed gfia-single line segment only.

embership fu

e e




}anm\ =

For a normal and convex fuzzy set, the bandwidth (or width) is
defined as the distance between the two unique crossover points:

Bandwidth(A) = | x, - x, |
where u ,(x,) = U ,(x,) = 0.5
Symmetry :

A fuzzy set A is symmetric if its membership function around a
certain point x = ¢, namely uy,(x + c) = (x - c) forall x € X.

A

1.0+




Fuzzy terminologies. Openand Closed

uzzy set Ais
Open left

iflim __ _p,(x)=1andlm_ __ pt,(x)=0
Open right

Iflim g, (x)=0andlim __ _ u,(x)=1
Closed

LI IEN L ey Rt R oy R

Open left e o Open right

AN




= Singleton

It is a fuzzy set whose support is a single point
in X with p,(x)=1

R e

45 Age

Fig: Fuzzy singleton 45 years old



e

Terminology (Recap)

R

§s over points

o-cut

support




_
Fuzzy . When we say about certainty of a thing

Example: A patient come to the doctor and he has to diagnose so
that medicine can be prescribed.

Doctor prescribed a medicine with certainty 60% that the patient is
suffering from flue. So, the disease will be cured with certainty of
60% and uncertainty 40%. Here, in stead of flue, other diseases
with some other certainties may be.

Probability: When we say about the chance of an event to occur

Example: India will win the T20 tournament with a chance 60%
means that out of 100 matches, India own 60 matches.



Prediction vs. F

The Fuzzy vs. Probability is analogical to Prediction vs. Forecasting
Prediction : When you start guessing about things.

Forecasting : When you take the information from the past job
and apply it to new job.

The main difference:

Prediction is based on thebest guess from experiences.

Forecasting is based ondata you have actually recorded and
packed from previous job.



/
— Set Operations

Product of a two fuzzy sets

Equality

Product of a fuzzy set with a crisp number
Power of a fuzzy set

Difference

Disjunctive sum

198
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Fuzzy arithmetic

Fuzzy Arithmetic uses arithmetic on closed intervals. The
basic fuzzy arithmetic operations are defined as follows:

Addition: [a, b] + [c,d] = [a+ ¢, b + d]

Subtraction: [a,b] - [c,d] =[a-d, b-(]

Multiplication: [a,b].[c,d] = [min(ac, ad, bc, bd), max(ac,

ad, bc, bd)]

Division: [a, b] / [c,d] = [a, b] . [1/d, 1/c] = [min(a/c, a/d,
b/c, b/d),max(a/c, a/d, b/c, b/d)]



uct of a two fuzzy sets

The product of two fuzzy sets A and B is a new set
A.B whose MF is defined as

Example
A={(x,,0.2),(x,,0.8),(x,,0.4)}
B ={(x,,0.4),(x,,0),(x;,0.1)}
Find A.B
Solution

A-B ={(x,,0.08),(x,,0),(x,,0.04)}



———ftquality =

Two fuzzy sets A and B are said to be equal A=B if

p,(x) = g (x)

Example

A={(x,,0.2),(x,,0.8)}

B ={(x,,0.6),(x,,0.8)}
C =1{(x,,0.2),(x,,0.8)}

A#B

A=C



ct of a fuzzy set with a

Multiplying a fuzzy set A by a crisp number a results in a new fuzzy set a.A with
the MF :

Hoq(X)=a.p(x)

Example

A={(x,,0.4),(x,,0.6),(x;,0.8)}

a=0.3
a.4={(x,,0.12),(x,,0.18), (x,,0.24)}



er of a fuzzy set

The a power of a fuzzy set A is a new set Aa with the MF

H o (X) = (1, ()"

Example
P A =1{(x,,0.4),(x,,0.6), (x,,0.8)}

="

A" ={(x,,0.16),(x,,0.36),(x,,0.64)}



WPhiffsrence ——— o5

Difference of two fuzzy sets A and B is a new set A-B defined as:
A—Bb=A4AnB5

Example

£ &0 056 006)
B ={(x,,0.1),(x,,0.4),(x,,0.5)}

Find A-B
Solution

B ={(x,,0.9),(x,,0.6),(x,,0.5)}
A B—4-B-x 02,0605 (5,05



/—\ E———

" Fuzzy set operations contd.

Algebric product or Vector product (AeB):

Hag(X) = (X) @ g(X)
Scalar product (g x A):

Hoa(X)=a - t,(x)
Sum (A + B):
/JA+B(X)=/JA(X) +IJB(X) = /JA(X) - IJB(X)
Difference (A — B=AN B°):

o (x)=py (x)
A-B AmBC

Disjunctive sum: Ae B= (AN B) U (AN B®))
Bounded Sum: | A(x) @ B(x) |

H o areeo = Mind T, p(x ) + pg (x )4
Bounded Difference: | A(x) g B(x) |

B o= ma 0 OcEEp B E—1}
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Fuzzy set operations contd.

Equality (A = B):

Ha(X)=Hg(x)
Power of a fuzzy set A“:

Ha () = {H,(x )¢

If a < 1, then it is called dilation

Ifa > 1, then it is called
concentration



'sjunctive sum

The disjunctive sum of two fuzzy sets A and Bisanewset 4 53

defined as: S =
ADB=(ANB)U(ANB)

Example

A=1(x,,0.4),(x,,0.8),(x3,0.6)} B ={(x,,0.2),(x,,0.6),(x,,0.9)}

Solution

A= {(x1 0.6),(x,,0.2),(x,,0.4)} B =1{(%,,0.8),(x,,0.4),(x,,0.1)}
ANB={(x,02),(x,,0.2),(x,,04)} ANB={(x,,0.4),(x,,0.4),(x,,0.1)}
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Fuzzy set operations ( Recap)

m Complement
fig=1—jia(z), for allz € U
m Algebraic sum
pa+s(z) = pa(z) + pe(z) — palz).pe(z)
m Algebraic product

pas(z) = pa(z).us(z)

m Bounded sum

pags(z) = min(l, pa(z) + pa(z)]
m Bounded difference

paos(z) = maz(0, pa(z) — pa(z)




Properties of the fuzzy sets

® The properties of the classical set also suits for the
properties of the fuzzy sets. The important properties of
fuzzy set includes:

® Commutativity
® AUB=BUA, ANB=BNA
@® Associativity
e e
® Distributivity
AL BC. (AR
e A e

209



Properties of the fuzzy sets

® Idem potency (the same power)
AUA=A ANA= A.

® Identity
AUp=A andANX=A ANgp=¢pandAU X=X
Where
O is the empty set (the degree of membership of all its elements is zero)

® Transitivity
I[fACBCCthenACC

® Involution (double complement)

A=A

210
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Power of a fuzzy set A“.

Ha" () = {1, )}

If @ < 1, then it is called dilation
If @ > 1, then it is called concentration



/mﬁﬁmf%/

~—ldempotence

Transitivity :

fAS B B<S CthenA &
C

Involution :
(A°) =A

De Morgan’s law :

(AN B)=A° U B¢
(AU Bf=A°N B°



Properties of Fuzzy Set (Recap)

m Commutativity
AUB=BUA;ANnB=BnNA

m Associativity
AU(BUC)=(AUB)UC;An(BNnC)=(ANnB)NnC
m Distributivity
AU(BNC) =(AuB)N(AUC); AN(BUC) = (ANB)U(ANC)
m [dempotency

AJA=AANA=A
m Transitivity

ACBCC, then ACC
m Identity

AUp=A; AN =4¢
AU X = X; AN X =X



m Involution

m DeMorgan's law

8
D

8
C

||

Sy

| |
= C

Sy

tol ol
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Consider two fuzzy sets A and B. Find Complement, Union, Intersection

L_J1, 05 06 02 06
24=127T3 714 "5 T [
5 _J05 08 04 07 03
=12 T3 "1 T35 "6
Solution...
- {0+O.5+0.—1+0?ﬁ+0—1
417 3 . B
Complement ~ 2 4 ) 6
B_ 05+02 0.6 0.3 0.7
P=12 "3 7175 "6
Union

0.8 06 07 0.6




intersection
AMNB= {0'5 -+ o 4 s + 0.2 + 0'3} ~Minimum is used

2 3 4 5 6

216



(2) Consider 2 given fuzzy sets,

1 03 05 02
A_{g; 401 60? 81}
Bimofe— o o
fg -t Pl

Perform,

(a) Union

(b) Intersection
(c) Complement
(d) Difference



(a) Union

AU B = maz{pa(z), p5(z)}
_{1+o.4+o.5+1}
TR V8 8

(b) Intersection

AN B = min{pa(z), ps(z)}
05 03 01 0.2

-{2 4+6+8}

(c) Complement

. 0 07 05 038
A=1—paslz)={=+—+ 5 8}
05 06 09 O

— 1= == i
B=1-pp(s) = {0+ o+ o2 + 2}



(d) Dafference

— 05 03 05 0
P el of ol
Bl[A=BnNA={_+— : -

| {2+ 4 T 6 " 8}



(3) Consider 2 giwen fuzzy sets,

Perform,
(a) B, U By
(c)B1
(e)Bi| Bz

(9)B1N B2

(i)B1 U By

(k)Bz U By

1

B, =1

0.7 0.3

0.15

0

7
By ={

0+
1

0.6 0.2

1.5 +2.0+

2.5
01

+3
0

0
¥

1.0

15+2.0+

(b)B1 N By
(d) B2

(f)B1U By
(h)Bl HE
(7)B2n By

25

3.0

¥
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(a) BiUBy={—+——+ — ¢ 4 7 0}

1 0.75 03 0.15 0

10 " 1.5 " 20 " 25 "3
) 06 02 0.1 0
.0

(b) BIOB2:(){100J;515072'008255 13 }

e NN

(“’)32:{1-0*1;)5*%%+%%*?%5 :
(e)BllezBmE={—o %3;2.8:§5+3T1}
WRUA=RTS=N S 8 5
(9) BiNB=BiU By = {35+ 7+ 55+ 25 T30/



0O 025 03 015 O

(h) B1N By ={1]‘_0 +01-'755 +89 +02855 + 31.0}
- B _= . .
anmo L B 8 8
(1) B2N By = {5 %+ ot 3 g
e 0. 0 1
(k)B"’UB2’{1o 15+20+25 30°



/Wzsnecessary to compare two sensors based upon their

detection levels and gain settings. The table of gain settings
and sensor detection levels with a standard item being mon-
itored prowviding typical membership values to represent the

detection levels for each sensor is given in table:

Gawn | Detection level | Detection level
setting of sensor 1 of sensor 2

0 0 0

10 0.2 0.35
20 0.35 0.25
30 0.65 0.8
40 0.85 0.95
50 1 1

Perform union, intersection, complement and difference over

B e DO OO PO

" o

sensor 1 and sensor 2.




Grwen the unwverse of discourse,

X = {0, 10, 20, 30, 40, 50}

The membership functions for the two sensors in the discrete

form as,
D_{0+0.2+0.35+0.65+0.85+1}
YT T T 20 ' 30 ' 40 ' 5O
DZ_{O+O.35+0.25+0.8+0.95+1}
TR 10 20 30 40 50

D1 — Sensorl
D2 — Sensor2



(a) Union

0 035 035 08 095 1
By Da=mos| Dy, Dal =40+ 5+ 55 Y55+ B T Boe
(b) Intersection
: 02 025 065 08 1
D1 N Dy = min[Dy, Ds) = {— 6 " a0 40 +50}
(c) Complement
= 1 08 065 035 GI5 0
By =1 iBE = 2
T T B O B,
1 3 ; : i
$ T = { 10 20 30 " 10 +5o}



(a) Algebraic sum

pars(X) = [ﬂA(m)‘l'#B(m)]—[ﬂA(m) pa(z)]

0.3, 05 06 , 006" 008" 0.
=7 +t5 13 } { 2 gt
028 0.44 052
= (P2 2 +2}

(b) Algebraic product

pas(X)=pa(z)- ps(z)
N {0 .02 0.06 0.08 0.5
. 1

+2+3+4}




(d) Difference

— 0 02 03 02 005 O.
Di|Dy=DinDy={5+ 75+ # =m #mtre]

5 10 20 30
Do|Dy = DN Dy = {5 +

035 025 035 0.15 L0 ,
10~ 20 ' 30 ' 40 @ BO




(5) Consider 2 given fuzzy sets,
0.3 04

0.5

0.2
A={—+

2 * 3 +
01 .02 032
+

B
0.1

B =4 3 + 5 + 3
Find,

(a) algebraic sum

(b) algebraic product

(c) bounded sum
(d) bounded difference

4

¥
¥



(c) Bounded sum

kagp 5(X) = min[l, ua(z) + p5(e)
_ min{l,{of . 055 4 0.6 4 11.15}}

_{0.3 by 0.5 " 0.6 - 1}
T E R 2 3 4

(d) Bounded difference

paoB(X) =0'"1W$[8, {M(fg)z— #3(593)]
P {0.1 L0102 0.5.}
e 2 3 4




”

Problems (book)



Example :
A(x) = {(x1, 0.2), (X2, 0.3), (3, 0.5), (x4, 0.6)}
B(Y) = {(yh 08): (st 06): (y3a 03)}

A x B =min{jia(X), pg(y)} =

h Y2 s
[02 02 02]
03 03 03
05 05 03

06 06 03



N

Assume two Fuzzy sets
® A={(1,0), (2,:5),3,1)]

® B={(1,1), (2‘) 5): (3?0)}

® A x B can be arranged as a two-dimensional fuzzy
set:
B
1 05 0
0 [0OTO0T]O
A 05[05[05][0
| [T [05]0

A x B={((1,1),0), ((1,2),0).( (1,3),0) ((2,1),0.5),
((2,2),0.5), ((2,3),0).((3,1).1), ((3,2),0.5) ((3,3).0)}




e

Example 3.4. Consider two fuzzy sets A and B. A represents universe of

three discrete temperatures » = {xy, x2, 3} and B represents universe of two
discrete flow y = {y1, 72 }. Find the fuzzy Cartesian product between them:

0. 4 0.7 0.1 0.5 08
A= -} and B = + ;

Solution. A represents column vector of size 3 < 1 and B represents column

vector of size 1 x 2. The fuzzy Cartesian product results in a fuzzy relation R
of size 3 x 2:

i i
T 0.4 04
Ax B=R= x 0.5 0.7 :

0.1 0.1



(6) Show the following fuzzy sets satisfy DeMorgan's law:
1

pa(z) = e

1



”

DeMorgan's law:

We have,

paus(z) = mazjpa(z), ua(z)]
_ ka(z) + ps(z) + |pa(z) — pa(z)|

iy = ol g )
_ ha(z) + pp(z) — |pa(z) — pa(z)
2




AU B = paus(z)
_ pa(@) + us(@) + lpal) - pa(a)

_ pale) + ua(@) + SIFCEC)

(" wa(z) > ﬂA(-’D))
_ pa(z) + ps(z) + (B(z) — pa(z)]

_ pale) + ps(z) * p(a) -~ pae)

_ 2x pp(z)

1/2
g )

=pB=(7—7—%

1+5:z:






AN B = isp=(z)
() + pglz) - Iu—(w) pg(z)

_ pa(z) + ug(w) — [pa(z) — pp()]

b )
_ pz(z) + pg(z) — pgle) + pg

_2x pg(z)
2

=g = T~ )1/2

AUB=AnB=1-{
1+ 5z
Hence, DeMorgan's law 1s satisfied.

1+5:z:
)1/2




W functions | /

bt

—Membership function on a discrete universe of course is trivial.
However, a membership function on a continuous universe of

discourse needs a special attention.
Following figures shows a typical examples of membership functions.

A A A

X > >

i ; = >
< triangular > < trapezoidal > curve

< non-uniform > < non-uniform >



Atreallife example —

Two fuzzy sets A and B with membership functions v ,(x ) and y,(x ),
respectively defined as below.

A = Cold climate with i (x ) as the MF.
B = Hot climate with 1/, (x ) as the M.F.

N M

-15 -10 -5 0 510152025303540 4550 >

X >

Here, X being the universe of discourse representing entire range
of temperatures.



/
.

/

What are the fuzzy sets representing the following?

0 Not cold climate

Not hold
2

climate
Extreme climate

Pleasant

Noteémﬂgetéhat "Not cold climate” f= "Hot climate” and

vice-versa.



Atreallife example —

—Answer would be the

fgiowWBecold

alimate — U ,(x ) as the
& Niét hot

gl t?mt% Hg(x ) as the MF.
) Extreme

AWa&yith 11, - (x) = max(u,(x ), 4, (x))as the MF.
) Pleasant cllmate

AN Bwith g, o (x)=min(u,(x), Us(x))as the MF.

The plot of the MFs of A U B and A N B are shown in the
following. . .

Extreme climate Pleasant climate
1.0

A Ma n
1.0 B
0. ] 2 <
= S S 3.1_
151075 0 5 10 15 20 2530 3540 45 50
X

5 15







Fuzzy Relations
Consider the Crisp Set Relation

m Consider,

X={p,q,r}
Y = {2,4,6}

Cartesian product of these two sets, X x Y, is,

{(p,2),(p,4),(p,6),(q,2),(q,4),(q,6),(r,2),(r,4),(r,6)}
From this set one may select a subset such that,

R ={(p,2),(g,4),(r,4),(r,6)}
Relation matrix is,

[S]
O O =
_ o= O e
= O O o




Coordinate diagram of the relation




Mapping of the relation




Composition on Classical Relations

m The operation executed on two compatible binary relations to
get a single binary relation is called composition.

m Let R be a relation that maps elements from X to Y and S
be a relation that maps elements from Y to Z. R and S are
compatible if,

RCXxYand SC Y xZ

m The composition between the two relations is denoted by Ro S.






Fuzzy Relation

m Let,

K= {3)'1, Ty, T3, 34} and Y = {yh Y2, Y3, y4}

Let R be a relation from X and Y given by,
R 0.2 0.4 0.1 0.6 1.0 0.5

- + - - +
(121, y3) (:1:1, y2) (3)2, y2) (:D2, y3) (3’3: y3) (:Dg, yl)
Fuzzy matrix for relation R is,

Vi oy2 w3
1 0 04 0.2
2 0 01 06
zz | 0.5 0 1.0



P

Bipartite Graph




Operation on Fuzzy Relations

m Union
,‘l’RUS(mi y) == ma.:c{y,R(m, y)’ /I'S(m: y)}
® Intersection

prns(z, y) = min{ur(z, y), ps(z, y)}
m Complement

pg(z,y) =1— pr(z,y)
m Containment

RC S = ur(z,y) < us(z,y)

m Inverse
R~ Y(y,z) = R(z,y) for all pairs (y,z) € ¥ x X
m Projection

priy|(Z, y) = maz.pr(z, y)



Properties of Fuzzy Relations

m Commutativity
m Associativity

m Distributivity
m [dentity

m [dempotency

m DeMorgan's law



P

Fuzzy Compositions

m Let A be a fuzzy set on universe X and B be a fuzzy set on
universe Y.

m the cartesian product over A and B results in fuzzy relation
R.ze,
AxB=R
where
RCXXY
m The membership function is given by,

1r(z,y) = paxs(z,y) = min[pa(z), uB(y)]



Fuzzy Composition Techniques

m Maxz—min composition
m Let R be fuzzy relation on cartesian space X x Y and S be fuzzy
relation on cartesian space Y x Z.

B Max—min composition of R(X, Y) and S(Y,Z),
MT(x)z) — ou'RoS(x’z)

= mazyc y{min[ur(z, y), us(y, z)|}
=Vyevlur(z, y) Aps(y,2)Ve e X,z € Z




e

Other Compositions Techniques

® Min-max Composition
® Max-product Composition



m Min—max composition

m Let R be fuzzy relation on cartesian space X x Y and S be fuzzy

relation on cartesian space Y x Z.
m Max—min composition of R(X, Y) and S(Y, Z),
ur(z,z) = ppos(e, 2)
= minye y{maz[ur(z,y), ns(y,z)|}
= ANyerlpr(z,y) Vus(y,2)Ve € X,z€ Z



m Maxz—product composition

m Let R be fuzzy relation on cartesian space X x Y and S be fuzzy
relation on cartesian space Y x Z.
m Max—min composition of R(X, Y) and S(Y, Z),
pr(z,z) = pros(z, z)

= mazyc y{ur(z, y)  us(y, 2)}
= VyéY[,U'R(m, y) c #S(’y,Z)]V:B e X,z€Z



Properties of Fuzzy Composition

RoS=SoR
(ReSy* =g el
(RoS)oM =Ro(SoM)



Problems

(1) Consider the following two fuzzy sets:

03 07 1
A={—+ + —} and
" 0f 09

g4 0
{yl yz}

Perform the cartesian product over these given fuzzy
sets.



pr(21, Y1) = min
/‘R(mls y2) = man
(

pLr(zp, y1) = min

pr(z2, Y2) = min

pa(z), ws(y1)]
1a(z), uB(ye)
L/'LA(:BQ% /“B(yl):

1a(22), kB(Y2)

man
man
mn
man

0.3,0.4
0.3,0.9
0.7,0.4

0.7,0.9

=0.3
= 0.3
= 0.4
—l ¢ 87

/LR(CB3, yl) - min[uA(xg,),uB(yl)] - - mz'n[l, 0.4] = 0.4
Lr(zs, ¥2) = min[pa(zs), ps(y2)] = min[1,0.9] = 0.9



min[0.3,0.4] = 0.3
min[0.3,0.9] = 0.3

pr(@1, Y1) = min[pa(z), pB(y1)
pr(z1, y2) = man(p (1), nB(Y2)
pr(22, y1) = min[pa(22), pB(y1)] = min[0.7,0.4] = 0.4
pr(22, y2) = min[pa(2), k(y2)] = min[0.7,0.9] = 0.7
pr(z3, y1) = man[pa(@s), p(y1)] = man[1,0.4] = 0.4
pr(zs, y2) = man[pa(zs), La(y2)] = min[1,0.9] = 0.9

Y1 Y2
z [ 0.3 0.3 ]
R=AxB==z | 04 0.7
zs | 0.4 009 |




(2) Two fuzzy relations are given by,

u y2

R_= 0.6 0.3 -
» | 0.2 0.9

21 Z2 23

§_m 1 05 03
w | 0.8 0.4 0.7

Obtawn fuzzy relation T as a composition between the

fuzzy relations R and S.



(a) Maz—min composition

pr(z, z1) = maz{min[pr(z1, y1), s(y1, 21)),
min[pr(e1, y2), ks (Y2, 21)]}
= maz{min[0.6, 1], min[0.3, 0.8]}
= maz{0.6,0.3} = 0.6
pr(zy, 22) = maz{man[pr(z1, v1), Ls(y1, 22)],
min[uR(mla y2): /J'S(yZ, Z’Z)]}
= maz{min[0.6, 0.5], min[0.3, 0.4]}
— maz{0.5,0.3} = 0.5
pr(T1, z3) = maz{min|pr(z1, y1), ks(y1, 23)],
min[ﬂR(mh y2): “S(yZ; 23)]}
= maz{min[0.6, 0.3], min[0.3,0.7]}
=-maz{0.3,0.3} = 0.3



P

ﬂ'T(x2: zl) = 'mam{min[ﬂR(xQ) yl)’ u'S(yl’ zl)]:
mzn[ﬂR(@» y2)3 uS(yZ: 21)]}
= maz{min[0.2, 1|, min[0.9, 0.8]}
= maz{0.2,0.8} = 0.8
pr(ez, 22) = maz{min[pur(22, y1), ps(y1, 22),
min[uR(m: yz), /J:S(yz, 22)]}
= maz{min[0.2,0.5], min[0.9, 0.4]}
= maz{0.2,0.4} = 0.4
pr(z2, 23) = maz{min[pur(x2, ¥1), ks(v1, 23)],
man|Lr(22, Y2), s( Y2, 23)]}
= maz{min[0.2, 0.3], min[0.9,0.7]}
= maz{0.2,0.7} = 0.7



T=ReS="1"

. Z2 23
0.6 05 03

0.8 0.4 0.7



(3) For a speed control of DC motor, the membership func-
tions of series resistance, armature current and speed are
quven as follows:

04 06 10 0.1
SR_{E‘L 60 100 120
I_{B+O.3+O.6+O.8+ 1.o+£,
“ Y20 40 60 80 100 120

_ {085 . 0.67 . 0.97 . 0.25}
~ Y500 ' 1000 1500 1800

Compute relation T for relating series resistance to motor
speed. Perform maz—min composition only.




30

B @5 Fe '@

100
120

=X =

20

60
80
100
120

20 40 60

0.2
0.2
0.2
0.1

0.3
0.3
0.3
0.1

500

- 0.2
0.3
0.35 0.6
0.35 0.67 0.8
0.35 0.67 0.97
0.2

0.4
0.6
0.6
0.1

1000

0.2
0.3

0.2

80
0.4
0.6
0.8
0.1
1500
0.2
0.3
0.6

0.2

100
0.4
0.6
1.0
0.1

1800

0.2 1

0.25
0.25
0.25
0.25

03 |

120
0.2
0.2
0.2
0.1




T =l 5=

30
60
100
120

500 1000 1500 1800
035 04 04 0.25°
0.35 0.6 0.6 0.25
0.35 0.67 0.97 0.25
@1 61 04 o4 |







Example

=

R
1
2
S

0.1 0.2 00 1.0
03030002

ue 0F L0 04 5 o0 00 10

mi 09 02 08 04

e

e
3080908

QUL O S Q|

0.9
0.2
0.8
0.4

0.0
1.0
0.0
0.2

0=
0.8
0.7
0.3



