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Introduction-Perceptron Network

Perceptron ia a neuron in ANN

Perceptron network is the simplest of NN used for
classification of patterns

More powerful than Hebb Network

-bipolar data

-iterative weight adjustment

Simple Perceptron was developed by Block in 1962

Various types of perceptron was developed by
Rosenblatt and Minsky



" Introduction-contd.

Perceptron is limited to perform only binary
classification of patterns

[t can learn only lineraly seperable problems

Perceptron use binary activation fn./step
fn./thresholding fn./heaviside fn.

[terative learning converges to correct weights
2 types of perceptron-single layer and multilayer
Learning rate parameter o is set (0 and 1)



-Perceptron network consists of 3 units: sensory unit (input
unit), associator unit (hidden unit), and response unit
(output unit).

-Sensory units are connected to associator units with fixed
weights having values 1,0 or -1 .

-The binary activation function is used in sensory unit and
assoclator unit.

-The response unit has an activationof 1,0 or -1.



m The output of the perceptron network is given by;
y =1 Yin)

wheref (yin ) is activation function and is defined as;
2 .
1 ! f Vin 2 ©

0if -e<y<e

J+ =.f(‘-*jn) =L

ol If y.<e

~—

m The perceptron learning rule is used in the weight updation
between associator unit and response unit.

m The error calculation is based on the comparison of the val-
ues of targets with those of the calculated outputs.



The weights will be adjusted on the basis of the learning rule if an
error has occurred for a particular training pattern.

wi(new) = w;(old) + d tx;
b(new ) =b(old ) + ot

where,

t= target value(+lor 1)
o= learning rate

If no error occurs, there is no weight updation and training process
may be stopped



perceptron network with its three units




Learning Rule

m A finite n number of input training vectors with their asso-
ciated target values; x(n) and t(n).

m The output y is obtained on the basis of the net input cal-
culated and activation function being applied over the net
input.

r-_ u "
1 ff }fﬂ > 6

0if -o<y<eo

.T :./1 (‘}”) ==
-lif y.<eo

in

o



m The weight updation is as follows:
If y # t then

w; (ﬂgw} — 'lﬂ;(ﬂld) + atz;

else, we have

w(new) = w(old)



Perceptron Learning Rule

Convergence Theorem

“If there is a weight vector W, such that f(x (n) W )=
t(n), then for any starting vector wi, the perceptron
learning rule will converge to a weight vector that gives
the correct response for all training patterns, and this
learning takes place within a finite number of steps
provided that the solution exists”



Architecture

Figure : Single classification perceptron network



Perceptron has sensory, associator and response unit

In this architecture only the associator and response
unit is shown and sensory unit is hidden because only
the weights between the associator and the response
unit are adjusted

Input layer consists of input neurons from Xi...Xi...Xn
There always exist a common bias of 1
This is a single layer network
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P

ceptron Trammg Algorlthm for Single Output Class

m Step O0: Initialize the weights and bias. Also, initialize the

learning rate,a(0 < a < 1).

m Step 1: Perform steps 2-6 until the final stopping condition
1s false.

m Step 2: Perform steps 3-5 for each training pair indicated
by s 7L,
m Step 3: The input layer containing input unit is applied

with i1dentity activation functions:

T = 5



m Step 4: Calculate the output of the network.

Yin = b+ im1 Tws
Il:f J?in > 0
0if -o<y<oeo

y=f @) = if Y=

-1if y<eo



m Step 5: Weight and bias adjustment:
If y # t then,

wi(new) = w;(old) + atz;
b(new) = b(old) + at

else, we have

w(new) = w(old)
b(new) = b(old)
m Step 6: Train the network until there 1s no weight change.

Otherwise, start again from Step 2.



- | \ e o
PeT@pt/ro/nTrammg Algorithm for Multiple OUtput (.

m Step O0: Initialize the weights and bias. Also, initialize the
learning rate,a(0 < o < 1).

m Step 1: Perform steps 2-6 until the final stopping condition
1s false.

m Step 2: Perform steps 3-5 for each training pair indicated
by, s: t.
E Step 3: The input layer containing input unit is applied

with identity activation functions:

T = S



m Step 4: Calculate the output of the network.
Yinj = bj + i1 Tiwy

1if V> o
r=f G =< Y 0 H

-1if y<0



m Step 5: Make adjustment in weight and bias for y = 1 to

fiiatidr =31 o n
If f.i;?é Y; thEIl,

wiy (new) = wy(old) + atyz,
bi(new) = b;j(old) + at;

else, we have

w;; (new) = w;;(old)
bj(new) = b;(old)
m Step 6: Train the network until there is no weight change.

Otherwise, start again from Step 2.



Mtron Network Testing Algorithm

m Step 0: Initial weights is equal to the final weights obtained
during training.

m Step 1: For each input vector X to be classified, perform
Steps 2-3.

m Step 2: Set activations of the input unit.

m Step 3: Obtain the response of output unit.

T
Yin = Zi:l Ly Wy
r - -
n’l_'f J,r'” > )

Oif -o=y<o

y=f0)==

= I

-lif p<o






Step 1:
Step 2:
Step 3:

Step 5:
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input pai
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Since t# v, the ey Weights are,

Wi = W+ 0,
Wik Wy 4 =04 |y | Xl=]
Waim = Wy 05, =04 | ) | =
h.;nm " |:"rq|.|J]‘|"1I3I.'[
hlnlﬂh[:|p+l:|:l=i}-+ | %] 2|
'IhEnEwWﬂ%giiI#mﬂHiﬂHw[l 1 1].

The algorithmic steps are repeaied for 4 e input vectors with thedr nital weights as the previously
cileulated weights, ——



Input Net  Output  Target Weight Changes Weights
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This completes one epoch of the training,

'Ti'h:.ﬁliﬂl welghts after the first epoch is completed are, Wizl W=l b=-]



Linear Sepra bilty

w, b L
Iig_ul -_L_ = LY ‘-
W, W,

I (=1}
RS %

"7 =%+ 1 is the separating liné equation. N X Eoagt
The decision boundary for AND function trained hy A
HOn nétwork is given as,

In 8 simiilar way, ghe etwork can be gic i '
"-——-—__'i. perceptron netwo H"hﬂﬂmhﬁﬂﬂfnrlﬂmﬂummﬂg,mmﬂﬂﬁﬂrm




Problem 2

Implement AND function using
perceptron with 2 epochs



The final weights and bias after epoch 1is used as the
initial weight and bias for the second epoch

W1 =1, w2=1, b= -1






PrOblem..§:f.ml%Wn with binary inputs and=""

Wrgets using perceptron training algorithm up to 3
epochs

Solution: The truth table for OR funcnon with
binary inputs and bipolar vargews is shown in Lable

Table

X X) [
| I |
| () |
() | 1
() () l



Figure Perceptron network for OR function.



T—»;/.» _
The initial values of the weights and bias are taken
28 7610, .6.,

H?]:m:b:ﬂ

Also the learning rate is 1 and threshold is 0.2. So,
the activation function becomes

} L if Yin = 0.2



The final weights at the end of third epoch are
w=Lw=1b=-

Further epochs have to be done for the convergence
of the network



Adaline-Adaptive Linear Neuron
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Introduction

Adaptive Linear Neuron/ Element

Single layer ANN developed by Widrow& Hoff at
Stanford University in 1960

Based on Mc-Culloch Pitts neuron

Net input is not passed through activation function for

weig|
Used

Can

ht updation ie. Aw=« (t-yin) Xi

as a classifier for binary classification

learn iteratively and has linear decision boundary.



Adaptive Linear Neuron(Adaline)

m The units with linear activation function are called linear
units.

m A network with single linear unit is called an Adaline.

m [t uses bipolar activation for its input signals and its target
output.

m The weights between the input and the output units are
adjustable.

m Adaline is a net which has only one output unit.

m [t is trained using delta rule.
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g

Uses perceptron learning rule

Learning rule originates from
Hebbian assumption

Learning rule stops aftera
finite number of steps

If there is error ,weight and
bias are adjusted using

wi(new)= wi(old)+a t xi
bi(new)= bi(old)+o t

Does not allow real values in
output

Thresholding activation
function

> —Perceptron  ————— 8

B :

Al

Uses Delta learning rule

Delta rule derived from
gradient —descent method

Gradient —-descent method
continues

If there is error ,weight and
bias are adjusted using

wi(new)= wi(old)+a (t-yin )xi
bi(new)= bi(old)+a (t-yin )

Allow real values in output

Linear activation function



~Delta rule for single output unit

m Also known as Least Mean Square(LMS) rule or
Widrow Hoff rule.

m Widrow Hoff rule vs Perceptron learning rule:
Perceptron learning rule originates from the Hebbian assumption

while the delta rule is derived from the gradient descent method.
HPlerceptron learning rule stops after a finite number of learning
steps. But the gradient descent approach continues forever.
m Updates the weights so as to minimize the difference between

the net input and the target value.



__'__’__,.,-—‘-"'” X 03

' m The delta rule for adjusting thehweight of 1t pattern (i =
1 to n) is,

Aw; = at — Yin)z;
where,
Aw;— welght change
a— learning rate
z;— activation of input unit
Yin— Det Input to the output unit.ze,

Y= Z?:] T; W,
t — target output



e

e Delta Rule in the case of Several Output Units

m The delta rule for adjusting the weight from 4 input unit
to the 5™ output unit is

Aw; = aft; = Y )






Flowchart of training process







Training algorithm
”_,,,,""’

=

m Step 0 : Weights and bias are set to some random values but
not zero. Set the learning rate parameter, .

m Step 1 : Perform Steps 2-6 when stopping condition is false.
m Step 2 : Perform Steps 3-5 for each bipolar training pair;
Se
m Step 3 : Set activations for input unitsi = 1 to n :
Xi= S

m Step 4 : Calculate the net input to the output unit:
Yin



e -_.___“——-__'_“'_"—-‘—-;..._, S
it — = : : —
:_’________....r-‘- = -

B

Step 5 : Updatethe weightsand biasfori = 1ton:

wi (new ) = w; (old ) +a (t- Vin)X

b(new) = b(old) +a (t- Vyin)

Where a lies between 0.1 and 1.0
Sep 6 : If the highest weight change that occurred
during training is smaller than a specified tolerance then
stop the training process, else continue.




LT i
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Testing algorithm

o ——

m Step 0 : Initial weightsis equal to the final weights obtained
during training.

m Step 1 : Perform Steps 2- 4 for each bipolar input vector; x.

m Step 2 : Set activations of the input units to x.

m Step 3 : Calculate the net input to the output unit: v,

m Step 4 : Apply the activation function over the net input
calculated:

—
1 If J,in > 0

7=y O ) =
L s 0

—




Problems—

[Implement OR function with bipolar inputs and

targets using Adaline_ network.

Solution: The truth table for OR function with
bipolar inputs and targets is shown in Table 10.

Table 10 .

X1 X 1 i
1 ] 1 1
1 —1 | |

=] ] 1 1

) —1 ] ]
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~ Imieal : _
= emall random values, ay 0.1, and che learning rate o

ke set £ 0.1, Adso here tle least mean square CTrAT
?rl'.'l.:r' he ser. The weights are calculared unind thee bessr
miean square error is obramed. -
The initial wetghts are taken 1 be sy = 42 =

b= 1.1 and the learning rae o = 0.1, Foc the birst

input sample.xy = L = 1ior= |, we calculare the

RIEE INpHIE &S

o A b s
Fiw E""'E:‘rﬁ’.'; +£T|Fi"r

=l
= &4 X + X2
— 01+ 1 =01+ =0l =5



- yi) = (1 — 0.3) = 0.7. Updating

"~ the weights we abratn,
wilnew) = wylod] + ol L7

where iy — pulx; is caled as weight change Aut
The new weights are obtained as

wi (oew) = wilobd)+Aeq = 0.1 + 01 X 0.7 = 1
=00+ 007 =017

wiinew) = wolold)+arg = 0.1
+ 01 %07 % 1=017

Hoew) = bold)+ Ak =101+ 01 x 0.7 =017



By = ali = gl
S = alt — piglx
Ad = it — fiy)

Maw we calculare the error
Em (r—yl® = (0.7F = 0.49
The final weights after presenting firt inpur sam-
ple are
=017 017 0.17]

and evror £ = 0.49,



Fhese calculanions are performed tor all the input
amples and the error s calculated. One epoch s
completed when all the inpurt patterns are presented.
Sumnung up all the errors obrained tor each mmput
wmple during one epoch will give the total mean
wquare error of that epoch. The network training is
continued until this error is minimized to a very small

value.
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Total mean square erryy

3.02
1.938
1.5506
1.417

1.377
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| Madaline

Stands for Multiple Adaptive Linear Neuron
Developed by Ridgway, Hoff and Glanz
Combination of Adalines

Also called multilayered Adalines
Madaline= i/ps+ Adaline elements+ o/p

Training process of Madaline is similar to that of
Adaline



_ Architecture =

X

Architecture of Madaline layer.



ing Algori

idden layer and the input layer are adjusted, and
Weights vy, 82, .. - U AN the bias by that enter into outpur
¢ Yis 1. Thus, the weights entering ¥ unit may be taken as

In this training algorithm, only the weights between the
he weights for the output units are fixed. The
unit Vare decermined so that the response of uni

—

|
===y =7

and the bias can be taken as
=t
The activation for the Adaline (hidden) and Madaline (output) units is given by

= 1 ifx=0
FR=1 1 et



" Step0: Ininialize the weights. The weights entering the output unit are set as above. Set initial small
random values for Adaline weights. Also set initial learning rate @.

Step 1: When stopping condition is false, perform Steps 2-3.
Step 2: For each bipolar training pair s:4, perform Steps 3-7.
Step 3: Activate input layer units. For i =110 n,

X = §

Step4: Calculate net input to each hidden Adaline unit:

i
Zinj = é’; + Z.‘s‘;wg. j= Ltom

=]



Step 5: Calculate ourput of each hidden unit:
zj = f (Zinj)

Step 6: Find the output of the net:

L]
yim = bo + Zﬂﬂ"f
=l

7 =1 Uin)
Step 7: Calculate the error and update the weights.

1. If £ = y, no weight updation is required.

- " L] Bl é
2. Itz # yand r = +1, update weights on z;, where net input is closest to 0 (zero):

@(new} = E?J,-(l:-ld) + (1 — zirzj}

wi(new) = w,(old) + o (1 — Zimj)Xi

3. Itr+# yand r = —1, update weights on unirs z; whose net inpur is positive: |
wip(new) = wy(old) + o (=1 —z;,0) x;
bi(new) = by(old) + o (=1 — g, ,)

Step 8: Test for the stopping condition. (If there is o weight change or weight reaches a satisfactory -
or if a specified maximum number of i " .

' crations of weight ' formed th”
stop, or else continue). ght updation have been per
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| |
|
0l

'1-—15.

| b |
o

|
|
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3 INnitial & fixed weights
: & bias between hidden &
/ output layers
-
Set small random value

weights for adaline layer.
Initialize r

w Yes

Activate input units
x, = =,, =1 to r?

b

Find nmnet input to hidden laver
L | -
=, — b, + = xw,, j=1 to m
Calculate ocoutput
=z,= r(=,,)

iy

Calculater net input to output unit
rr
¥, = &y +IZE' =N,

Calculate output
» = f(y¥v,,)

v
ad




Yes
= ————
-

No

Yes
Update weights on unit z, whose
Nnet input is closest to zero.
b (new) = b, (old) + e (1—=,)
w, (new) = w, (old) + a(1—=z, ) x,
h 4
Update weights on units =z, which
has positive net input.
v b, (new) = b, (old) + a(1—=,,)
w, (new) = w, (old) + (1—=z,,) X,
L 4
if no N
N weight changes
o - -
(__/-(3 S ———— (or) specified
T ~ number of
.. epochs )
x_\\ // ) )
S N
Yes (‘ -

\
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““Introduction

Most common network in real-time applications
Multilayer feed forward network

Error is propagated backward from output unit to
hidden unit

Uses continuous differentiable activation function
Learning rule is Gradient —descent method



Back Propagation Network -Theory

m [his learning algorithm is applied to multilayer feed forward
networks consisting of processing elements with continuous
differentiable activation functions.

m The networks associated with back propagation learning
algorithm are called back propagation networks(BPNs).

m Algorithm provides a procedure for changing the weights to
classify the given input patterns correctly.

m [t uses gradient descent method .

m This is a method where the error is propagated back to the
hidden unit.




Generalization is one of the major advantage of BPN-
ability of the model to respond to new data/ unknown
data and make accurate predictions

Complexity in training of the network increases as the no
of hidden layers increases

Training of BPN is done in 3 stages/ phases
Feed Forward of the input pattern ( from i/p to hidden)
Back propagation of errors ( from o/p to hidden)
Weight and bias updating






)
| -
b
=
|

!| Initialize the weights
e I' to some random values |
| == e e et e B . - R —=
o el
For each rNo
training pair > : —————a %
‘\ iy -
‘x\\ -’_-
¢
l Yes
Receive input signal x, &
| tramnsmit to hidden unit
[
| In hidden unit, calculate o/p,
L}
|I z;_.,;- = VO); +r'£l X;V_g
II == f(zfn_;}! =1 to po
fF= 1 to m |

.' o i -

Send =, to the output layver units

|

: ]

’ Calculate output signal from
output layer,

el
Wi = Wy +y=21 Zi WV

. o Target pair i
P & ., enters '
CAD S S



b et

—— ¥ S

— —= . — - -
/ | Compute error correction tactor
i | o = (¥ £ (View)

' (between output and hidden)

-

¥ . S

Find weiq_:jﬁt & bias correction term
L AW = adZ; AWae = @

-1

!

Calculate error term J, |
(between hidden and input) ‘

m
Binj = _,:-E_ 153 Wik

L 8= Sy (i)

T

1

Compute change in weights & bias based

l

Update weight and bias on
output unit
Wik (New) = wy (old) + Awj,
Wok (New) = wy, (old) + Awg,,

T

@2



Update weight and bias on
hidden unit
Vjj(new) =V; (old) + AVj;
qu (new) = Vu, (old) + Avw

If
specified
number of epochs
reached or

=Y

No




Training Algorithmm

=

e

m Step 0: Initialize weights and learning rate.

m Step 1: Perform Steps2—9 when stopping condition is false.
m Step 2: Perform Steps3 — 8 for each training pair.
Feed— forward phase(Phase I)

m Step 3: Each input unit receives input signal z; and sends
it to the hidden unit(z=1 to n).

m Step 4: Each hidden unit z; (=1 to p) sums its weighted
input signals to calculate net input:

Zing = Vo5 + D=1 TiVy
Calculate output of the hidden unit by applying activation
function,

zj = f(2inj)

Send zj to output unit



m Step 5: For each output unit y, (k=1 to m), calculate the
net input:

Yink = Wok + Y.j=1 % Wik
and apply the activation function to compute output signal:

Y = f( yiﬂk)



Back—propagation of error(Phase II)

m Step 6: Each output unit yr (k=1 to m) receives a tar-
get pattern corresponding to the input training pattern and
computes the error correction term:

0k = (e — V) f'(Yink)
Then update the weights and bias:

ﬂ.‘lﬂjk — Ei:é;cﬂj
&‘wﬂ;ﬂ — ﬂfﬁ;ﬂ
Send d; to the hidden layer backwards.



m Step 7: Each hidden unit z (=1 to p) sums its delta
inputs from the output units:

Oinj = D k=1 Ok Wjk
The term §;,; gets multiplied with the derivative of f(zy;)
to calculate the error term:

0 = binj f'(2in)
Then update the weights and bias:

Avy; = adjz;
A%y = 0;



"

Rk e = Fa e _‘\-—__7—_
//

: Weight and bias updation(Phase I1I)

m Step 8: Each output unit yx (k=1 to m) updates the bias
and weilghts:

wix(new) = wir(old) + Aw;

wor(new) = wor(old) + Awok
Each output unit z; (3=1 to p) updates the bias and
weights:

v (new) = v (old) + Avy
wj; (new) = wy;(old) + Aw;
m Step 9: Check for the stopping condition may be certain

number of epochs reached or when the actual output
equals to target output.




~ Testing Algorithm-of BPN

m Step 0: Initialize the weights. The weights are taken from the
training algorithm.

B Step 1: Perform Steps2 — 4 for each input vector.
m Step 2: Set the activation of input unit for z; (=1 to n).

m Step 3: Calculate the net input to hidden unit z and its out-
put. For 7=1 to p,
Zinj = Wy + D2li—1 TV
z =f (%nj )
m Step 4: Now compute the output of the output layer unit. For
k=1 to m,

Yink = Wor + E?:l 25 Wik
Y — f (ymk)
Use sigmoidal activation functions for calculating the output.




B S1igmoidal activation functions

Bwnary sigmoid function
1

fla) = T—
fl(z) = f(z)[1 - f(z)]
Bl Gipolar sigmoid function

2

fla) = —= -1

f'(z) = 0.5[1 + f(z)][1 - f(z)]




| Summarization gorithm

X

Ziin = bor + %1 T+ Xl

Zain = Vo2 + x, Viz+X,) 23



—— =

= Computethe errw:-u_':h1 5;, here, £k = 1, only one output neuron.

0 = (f = we)f (vas)
01 = (t — y)f'(¥in)

m changes in weight between hidden and output layer:

_.:,'_n""""‘

i

.ﬂ.‘w[] = &51
&wl = &5121
Auwy = 0129

m Compute the error portion 0; between input and hidden layer,
J=1,2(ie,zin1, Zin2 ):
85 = Ginif'(Zin)
Ging = 51
Here, k=1(only one output neuron)
53'115,' = 51‘1Uj1
Oinl = 01W11,0in2 = 01W21
w1 — wy, w21 = un



—

m Error,

01 = dinif'(2Zin1)

02 = dinaf'(2in2)

m Change in weights between input and hidden layer:

Avir = ad1
Aol = ad1T
Avgr = ady
Avg = E.Iﬁg.‘fl
Avgy = oy

Avgy = ads



m Compute the final weights of the network:

v11(new) = v1(old) + Awvig
via(new) = via(old) + A
U1 (new) = vp1(old) + Avy
uys(new) = vyo(old) + A
wl( 1 &wl
wo( + Aup
wo(new) = wo(old) + Awp
vo1 (
vo2(




|Learning factors of BPN

m [nitial Weights

Initialized at small random values.

The choice of initial weight determines how fast the network con-

verges.

One method of choosing the weight w;; 1s choosing 1t in the range,
-3 3

hme%]

where o, 1s the number of processing elements 7 that feed —forward

to processing element 1.

Nyugen— Widrow initialization: Based on the geometric analysis

of the response of hidden neurons to a single input.

Random initialization of weights connecting the input neurons to
the hidden units is obtained by,

1 ~_ vy(old)
Hamew) = Vi )

4 =W E




B Learning rate,a

® The range of o from 10~ to 1.0 has been used successfully.

B Momentum factor,n

B 7€ [0,1) and the value of 0.9 is often used for the momentum
factor.

m Weight updation formulas used here are,
wi(t +1) = wi(t) + adrz + n|wi(t) - wi(t - 1)] and
vt +1) = vy(t) + a0z +n|v(¢) — vii(e-1))



B Generalization

m Number of training data

m Number of hidden layer nodes



Problem Using-BPN-find the new weight of the netwo,kshﬁ/
_Itispresented with the i/p pattern [0,1] and target o/pis 1. Use
learning rate a= 0.25 and binary sigmoidal activation function

4




Initial weights are [vu va vai|= [0.6 -0.1 0.3] and
[Vi2 V22 Vo2 |= [-0.3 0.4 0.5] and
[wi w2 wa= [0.4 01 -0.2]
Learning rate o= 0.25

Activation function is binary sigmoidal function

: 1
fix) = 1l 4 ¢x

Given output sample [x1,x2 |= [0,1] and target t=1



 Calculate the net input: For z; layer

,,,»/”“ =
Zinl = vo1 + x1v11 + X2021

=03+0x06+1x—0.1=0.2

For z; layer

Zimd = V02 + X1V12 + X2V22
=054+0x—-03+1x04=0.9

Applying activation to calculate the outpur, we

obtain
1
z1 = f(zim1) = e 5 g 0.5498
— Flzi) = 1 _ 1
22 = f \ain2) = 1 4+ e %2 1 4 09 = 0.7109



—

=

i
B, e - e =

I C;’ii—c;i;lhate the net input entering the output layer.
For y layer

Yin = wy + 21wy + 2run
= —0.24+0.5498 x 0.4 + 0.7109 x 0.1

= 0.09101
Applying activations to calculate the output, we
obtain
1 1
y=Fflm = = = 0.5227

I -+- e Jin 1 + e—(].ﬁ@lﬂl



* Compute the error portion oy

Se=(tp — y)f ik

Now

f Oin) = fOi)[1 = f(yim)] = 0.5227[1 — 0.5227]
f (yin) = 0.2495
This implies
81 = (1 —0.5227) (0.2495) = 0.1191



y/-"lﬁ;’ B S
= —

Find the changes in weights between hig
output layer: 'Aden 4y,

Aw = ady z1 = 0.25 X 0.1191 x 0,549
= 0.0164

Aw) = a0y 22 = 0.25 x 0.1191 x 0.710
= 0.02117

Awg = ady = 0.25 x 0.1191 = 0.02978



« Compute the error portion d, between input ang

hidden layver (f = | to 2):

.5} —— ﬁrql,fdl:ﬂ,n__,']

-
'Euq;: E 'ﬁi_' Wik
=1
5,._.?-=-:51 ) ['." only one output neuron]
:'b-ﬁ,',.; =51 ry; = 0.1191 x 0.4 = 0.04764
=28im2 =8y w3 = 0.1191 x 0.1 = 0.01191

Error, 81 = 8;n1 f(Zin1)
F(Zim1) = f(zim) [1 — F(2in1)]
= 0.5498[1 — 0.5498] = 0.2475

81 = 8in1 F (Zim1)
= 0.04764 x 0.2475 = 0.0118

Error, &> =8in2 [ (Zsm2)
F i zim2) = flzina) [1 — F{za)]
= 0.7109[1 — 0.7109] = 0.2055
A2 =5,,.;f‘fz;,,3]
= 0.01191 = 0.2055 — 0.00245




Now find the changes in weights between inpy;
and hidden layer:
Ary =@ X, —0.29%0.0118x0=0
A =ad x=0.25%0.01 18 x 1 =0.00295
Am; =ad;=0.25x%x0.01 18=0.00295
Arpy=adax, =0.25x%0.00245 X 0=0
A =adrxx=0.25X 0.00245 x 1 =0.0006125
Awgs = ady=0.25 x 0.00245=0.0006125



« Compute the final .ﬁ*eights of the network:
11 (new) = lﬂ]fﬂtd}'!"ﬂl*n =064+0=0.6
r1a(new) = p2lold)+Av;; = —-034+0= —0.3
1~y (new) = py(old)+ Ay
= —0.1 + 0.00295 = —0.09705

13({new) = ma(old)+ Ay
= 0.4 + 0.0006125 = 0.4006125
un (new) = wylold)+Awy = 0.4 + 0.0164

= 0.4164

un{new) = wn(old)+Aus = 0.1 +0.02117
=0.12117

vy (new) = wyy (old)+Awg) = 0.3 + 0.00295
= 0.30295

vp2(new) = vp2(old)+ A wvps
= 0.5 4+ 0.0006125 = 0.5006125

wy(new) = wylold)+Awyg = —0.2 4+ 0.02978
= —0.17022






APPLICATIONS OF BACKPROPAGATION
NETWORK

) g

Load forecasting problems in power systems.
Image processing.

Fault diagnosis and fault detection.

Gesture recognition, speech recognition.
Signature verification.

Bioinformatics.

Structural engineering design (civil).



