
Dr.Priya SDr.Priya S



MODULE 2
 Perceptron Networks
 ADALINE
 Back Propagation Networks



Topics in Perceptron

 Introduction
 Theory
 Perceptron Learning Rule
 Learning rule convergence theorem
 Architecture
 Flowchart for training process
 Training algorithm -for single  and multiple output

class
 -Testing algorithm

 Introduction
 Theory
 Perceptron Learning Rule
 Learning rule convergence theorem
 Architecture
 Flowchart for training process
 Training algorithm -for single  and multiple output

class
 -Testing algorithm



Introduction-Perceptron Network
 Perceptron ia a neuron in ANN
 Perceptron network is the simplest of NN used for

classification of patterns
 More powerful than Hebb Network
 -bipolar data
 -iterative weight adjustment
 Simple Perceptron was developed by Block in 1962
 Various types of perceptron was developed by

Rosenblatt and Minsky

 Perceptron ia a neuron in ANN
 Perceptron network is the simplest of NN used for

classification of patterns
 More powerful than Hebb Network
 -bipolar data
 -iterative weight adjustment
 Simple Perceptron was developed by Block in 1962
 Various types of perceptron was developed by

Rosenblatt and Minsky



Introduction-contd.
 Perceptron is limited to perform only binary

classification of patterns
 It can learn only lineraly seperable problems
 Perceptron use binary activation fn./step

fn./thresholding fn./heaviside fn.
 Iterative learning converges to correct weights
 2 types of perceptron-single layer and multilayer
 Learning rate parameter α is set (0 and 1)

 Perceptron is limited to perform only binary
classification of patterns
 It can learn only lineraly seperable problems
 Perceptron use binary activation fn./step

fn./thresholding fn./heaviside fn.
 Iterative learning converges to correct weights
 2 types of perceptron-single layer and multilayer
 Learning rate parameter α is set (0 and 1)



Theory  or Characteristics

-Perceptron network consists of 3 units: sensory unit (input
unit), associator unit (hidden unit), and response unit
(output unit).
-Sensory units are connected to associator units with fixed
weights having values 1,0 or -1 .
-The binary activation function is used in sensory unit and
associator unit.
-The response unit has an activation of 1,0 or -1 .

-Perceptron network consists of 3 units: sensory unit (input
unit), associator unit (hidden unit), and response unit
(output unit).
-Sensory units are connected to associator units with fixed
weights having values 1,0 or -1 .
-The binary activation function is used in sensory unit and
associator unit.
-The response unit has an activation of 1,0 or -1 .



The output of the perceptron network is given by;
y = f (yin )

where f (yin ) is activation function and is defined as;

The perceptron learning rule is used in the weight updation
between associator unit and response unit.
The error calculation is based on the comparison of the val-
ues of targets with those of the calculated outputs.



The weights will be adjusted on the basis of the learning rule if an
error has occurred for a particular training pattern.

wi (new ) = wi (old ) + α txi
b(new ) = b(old ) + α t

where,
t= target value(+1or 1)

α = learning rate

If no error occurs, there is no weight updation and  training process
may be stopped

The weights will be adjusted on the basis of the learning rule if an
error has occurred for a particular training pattern.

wi (new ) = wi (old ) + α txi
b(new ) = b(old ) + α t

where,
t= target value(+1or 1)

α = learning rate

If no error occurs, there is no weight updation and  training process
may be stopped



Figure : A perceptron network with its three units



Learning Rule

A finite n number of input training vectors with their asso-
ciated target values; x(n) and t(n).
The output y is obtained on the basis of the net input cal-
culated and activation function being applied over the net
input.

A finite n number of input training vectors with their asso-
ciated target values; x(n) and t(n).
The output y is obtained on the basis of the net input cal-
culated and activation function being applied over the net
input.





Perceptron Learning Rule
Convergence Theorem

 “If there is a weight vector W, such that f(x (n) W )=
t(n), then for any starting vector w1, the perceptron
learning rule will converge to a weight vector that gives
the correct response for all training patterns, and this
learning takes place within a finite number of steps
provided that the solution exists”

 “If there is a weight vector W, such that f(x (n) W )=
t(n), then for any starting vector w1, the perceptron
learning rule will converge to a weight vector that gives
the correct response for all training patterns, and this
learning takes place within a finite number of steps
provided that the solution exists”



Architecture

Figure : Single classification perceptron network



 Perceptron has sensory, associator and response unit
 In this architecture only  the associator and response

unit is shown and sensory unit is hidden because only
the weights between the associator and the response
unit are adjusted
 Input layer consists of input neurons from  X1…Xi…Xn
 There always exist a common bias of 1
 This is a single layer network

 Perceptron has sensory, associator and response unit
 In this architecture only  the associator and response

unit is shown and sensory unit is hidden because only
the weights between the associator and the response
unit are adjusted
 Input layer consists of input neurons from  X1…Xi…Xn
 There always exist a common bias of 1
 This is a single layer network



Flowchart



Perceptron Training Algorithm for Single Output Class







Perceptron Training Algorithm for Multiple Output Class







Perceptron Network Testing Algorithm



Problems
1.Develop a perceptron for the AND function with bipolar inputs and
targets









Linear Separability



Problem 2

Implement AND function using
perceptron with 2 epochs



 The final weights and bias after epoch 1 is used as the
initial weight and bias for the second epoch
 w1 = 1, w2= 1, b= -1





Problem 3 Implement OR function with binary inputs and
bipolar targets using perceptron training algorithm up to 3
epochs









Adaline-Adaptive Linear NeuronAdaline-Adaptive Linear Neuron



Topics in Adaline

 Introduction
 Theory
 Delta Learning Rule
 Architecture
 Flowchart for training process
 Training algorithm
 Testing algorithm

 Introduction
 Theory
 Delta Learning Rule
 Architecture
 Flowchart for training process
 Training algorithm
 Testing algorithm



Introduction
 Adaptive Linear Neuron/ Element
 Single layer ANN developed by Widrow& Hoff at

Stanford University in 1960
 Based on Mc-Culloch Pitts neuron
 Net input is not passed through activation function for

weight updation ie. Δw=α (t-yin) xi

 Used as a classifier for binary classification
 Can learn iteratively  and has linear decision boundary.

 Adaptive Linear Neuron/ Element
 Single layer ANN developed by Widrow& Hoff at

Stanford University in 1960
 Based on Mc-Culloch Pitts neuron
 Net input is not passed through activation function for

weight updation ie. Δw=α (t-yin) xi

 Used as a classifier for binary classification
 Can learn iteratively  and has linear decision boundary.



Adaptive Linear Neuron(Adaline) Theory

The units with linear activation function are called linear
units.
A network with single linear unit is called an Adaline.
It uses bipolar activation for its input signals and its target
output.
The weights between the input and the output units are
adjustable.
Adaline is a net which has only one output unit.
It is trained using delta rule.

The units with linear activation function are called linear
units.
A network with single linear unit is called an Adaline.
It uses bipolar activation for its input signals and its target
output.
The weights between the input and the output units are
adjustable.
Adaline is a net which has only one output unit.
It is trained using delta rule.



Perceptron Adaline
 Uses perceptron learning rule
 Learning rule originates from

Hebbian assumption
 Learning rule stops after a

finite number of steps
 If there is error ,weight and

bias are adjusted using
wi(new)= wi(old)+α t xi

bi(new)=  bi(old)+α t
 Does not allow real values in

output
 Thresholding activation

function

 Uses Delta learning rule
 Delta rule derived from

gradient –descent method
 Gradient –descent method

continues
 If there is error ,weight and

bias are adjusted using
wi(new)= wi(old)+α (t-yin )xi

bi(new)=  bi(old)+α (t-yin )
 Allow real values in output

 Linear activation function

 Uses perceptron learning rule
 Learning rule originates from

Hebbian assumption
 Learning rule stops after a

finite number of steps
 If there is error ,weight and

bias are adjusted using
wi(new)= wi(old)+α t xi

bi(new)=  bi(old)+α t
 Does not allow real values in

output
 Thresholding activation

function

 Uses Delta learning rule
 Delta rule derived from

gradient –descent method
 Gradient –descent method

continues
 If there is error ,weight and

bias are adjusted using
wi(new)= wi(old)+α (t-yin )xi

bi(new)=  bi(old)+α (t-yin )
 Allow real values in output

 Linear activation function



Delta rule for single output unit

Also known as Least Mean Square(LMS) rule or
Widrow Hoff rule.

.
Widrow Hoff rule vs Perceptron learning rule:
1 Perceptron learning rule originates from the Hebbianassumption

while the delta rule is derived from the gradient    descent method.

Also known as Least Mean Square(LMS) rule or
Widrow Hoff rule.

.
Widrow Hoff rule vs Perceptron learning rule:
1 Perceptron learning rule originates from the Hebbianassumption

while the delta rule is derived from the gradient    descent method.
2 Perceptron learning rule stops after a finite number of learning

steps. But the gradient descent approach continues forever.
Updates the weights so as to minimize the difference between
the net input and the target value.





 Delta Rule in the case of Several Output Units



Architecture



Flowchart of training process





Training algorithm

Step 0 : Weights and bias are set to some random values but
not zero. Set the learning rate parameter, .
Step 1 : Perform Steps 2-6 when stopping condition is false.
Step 2 : Perform Steps 3-5 for  each bipolar  training pair;
s : t .
Step 3 : Set activations for input units i = 1 to n :

xi = si

Step 4 : Calculate the net input to the output unit:

Step 0 : Weights and bias are set to some random values but
not zero. Set the learning rate parameter, .
Step 1 : Perform Steps 2-6 when stopping condition is false.
Step 2 : Perform Steps 3-5 for  each bipolar  training pair;
s : t .
Step 3 : Set activations for input units i = 1 to n :

xi = si

Step 4 : Calculate the net input to the output unit:
yin



Step 5 : Update the weights and bias for i = 1 to n :
wi (new ) = wi (old ) +α (t- yin )xi

b (new ) = b(old ) +α (t- yin )
Where α lies between 0.1 and 1.0

Step 6 : If the highest weight change that occurred
during training is smaller than a specified tolerance then
stop the training process; else continue.

Step 5 : Update the weights and bias for i = 1 to n :
wi (new ) = wi (old ) +α (t- yin )xi

b (new ) = b(old ) +α (t- yin )
Where α lies between 0.1 and 1.0

Step 6 : If the highest weight change that occurred
during training is smaller than a specified tolerance then
stop the training process; else continue.



Testing algorithm

Step 0 : Initial weights is equal to the final weights obtained
during training.
Step 1 : Perform Steps 2- 4 for each bipolar input vector; x.
Step 2 : Set activations of the input units to x.

Step 3 : Calculate the net input to the output unit: yin

Step 0 : Initial weights is equal to the final weights obtained
during training.
Step 1 : Perform Steps 2- 4 for each bipolar input vector; x.
Step 2 : Set activations of the input units to x.

Step 3 : Calculate the net input to the output unit: yin

Step 4 : Apply the activation function over the net input
calculated:



Problems













Total mean square error after each epoch is given as



Network architecture of ADALINE



Madaline
 Stands for Multiple Adaptive Linear Neuron
 Developed by Ridgway, Hoff and Glanz
 Combination of Adalines
 Also called multilayered Adalines
 Madaline= i/ps+ Adaline elements+ o/p
 Training process of Madaline is similar to that of

Adaline

 Stands for Multiple Adaptive Linear Neuron
 Developed by Ridgway, Hoff and Glanz
 Combination of Adalines
 Also called multilayered Adalines
 Madaline= i/ps+ Adaline elements+ o/p
 Training process of Madaline is similar to that of

Adaline



Architecture



Training  Algorithm











Back Propagation NetworkBack Propagation Network



Topics in BPN

 Introduction
 Theory
 Architecture
 Flowchart for training process
 Training algorithm
 Testing Algorithm
 Learning factors of BPN

 Introduction
 Theory
 Architecture
 Flowchart for training process
 Training algorithm
 Testing Algorithm
 Learning factors of BPN



Introduction

 Most common network in real-time applications
 Multilayer feed forward network
 Error is propagated backward from output unit to

hidden unit
 Uses continuous differentiable activation function
 Learning rule is Gradient –descent method

 Most common network in real-time applications
 Multilayer feed forward network
 Error is propagated backward from output unit to

hidden unit
 Uses continuous differentiable activation function
 Learning rule is Gradient –descent method



Back PropagationNetwork -Theory

This learning algorithm is applied to multilayer feed forward
networks consisting of processing elements with continuous
differentiable activation functions.
The networks associated with back propagation learning
algorithm are called back propagation networks(BPNs).
Algorithm provides a procedure for changing the weights to
classify the given input patterns correctly.
It uses gradient descent method .
This is a method where the error is propagated back to the
hidden unit.

This learning algorithm is applied to multilayer feed forward
networks consisting of processing elements with continuous
differentiable activation functions.
The networks associated with back propagation learning
algorithm are called back propagation networks(BPNs).
Algorithm provides a procedure for changing the weights to
classify the given input patterns correctly.
It uses gradient descent method .
This is a method where the error is propagated back to the
hidden unit.



 Generalization is one of the major advantage of BPN-
ability of the model to respond to new data/ unknown
data and make accurate predictions
 Complexity in training of the network increases as the no

of hidden layers increases
 Training of BPN is done in 3 stages/ phases
1. Feed Forward of the input pattern ( from i/p to hidden)
2. Back propagation of errors ( from o/p to hidden)
3. Weight and bias updating

 Generalization is one of the major advantage of BPN-
ability of the model to respond to new data/ unknown
data and make accurate predictions
 Complexity in training of the network increases as the no

of hidden layers increases
 Training of BPN is done in 3 stages/ phases
1. Feed Forward of the input pattern ( from i/p to hidden)
2. Back propagation of errors ( from o/p to hidden)
3. Weight and bias updating



Architecture



Flow chart







Training Algorithm

Send zj to output unit











Testing Algorithm of BPN



















Problem: Using  BPN find the new weight of the network shown.
It is presented with the i/p pattern [0,1] and target o/p is 1. Use
learning rate α= 0.25 and binary sigmoidal activation function



 Initial weights are [v11 v21 v01]= [0.6 -0.1   0.3]  and
[v12 v22 v02]= [-0.3   0.4   0.5] and
[w1 w2 w01= [0.4   0.1 -0.2]

Learning rate α= 0.25
Activation function is  binary sigmoidal function

Given output sample [x1,x2 ]= [0,1] and target t=1

 Initial weights are [v11 v21 v01]= [0.6 -0.1   0.3]  and
[v12 v22 v02]= [-0.3   0.4   0.5] and
[w1 w2 w01= [0.4   0.1 -0.2]

Learning rate α= 0.25
Activation function is  binary sigmoidal function

Given output sample [x1,x2 ]= [0,1] and target t=1




















