
Dr.Priya SDr.Priya S

MODULE 2
 Perceptron Networks
 ADALINE
 Back Propagation Networks

Topics in Perceptron

 Introduction
 Theory
 Perceptron Learning Rule
 Learning rule convergence theorem
 Architecture
 Flowchart for training process
 Training algorithm -for single and multiple output

class
 -Testing algorithm

 Introduction
 Theory
 Perceptron Learning Rule
 Learning rule convergence theorem
 Architecture
 Flowchart for training process
 Training algorithm -for single and multiple output

class
 -Testing algorithm

Introduction-Perceptron Network
 Perceptron ia a neuron in ANN
 Perceptron network is the simplest of NN used for

classification of patterns
 More powerful than Hebb Network
 -bipolar data
 -iterative weight adjustment
 Simple Perceptron was developed by Block in 1962
 Various types of perceptron was developed by

Rosenblatt and Minsky

 Perceptron ia a neuron in ANN
 Perceptron network is the simplest of NN used for

classification of patterns
 More powerful than Hebb Network
 -bipolar data
 -iterative weight adjustment
 Simple Perceptron was developed by Block in 1962
 Various types of perceptron was developed by

Rosenblatt and Minsky

Introduction-contd.
 Perceptron is limited to perform only binary

classification of patterns
 It can learn only lineraly seperable problems
 Perceptron use binary activation fn./step

fn./thresholding fn./heaviside fn.
 Iterative learning converges to correct weights
 2 types of perceptron-single layer and multilayer
 Learning rate parameter α is set (0 and 1)

 Perceptron is limited to perform only binary
classification of patterns
 It can learn only lineraly seperable problems
 Perceptron use binary activation fn./step

fn./thresholding fn./heaviside fn.
 Iterative learning converges to correct weights
 2 types of perceptron-single layer and multilayer
 Learning rate parameter α is set (0 and 1)

Theory or Characteristics

-Perceptron network consists of 3 units: sensory unit (input
unit), associator unit (hidden unit), and response unit
(output unit).
-Sensory units are connected to associator units with fixed
weights having values 1,0 or -1 .
-The binary activation function is used in sensory unit and
associator unit.
-The response unit has an activation of 1,0 or -1 .

-Perceptron network consists of 3 units: sensory unit (input
unit), associator unit (hidden unit), and response unit
(output unit).
-Sensory units are connected to associator units with fixed
weights having values 1,0 or -1 .
-The binary activation function is used in sensory unit and
associator unit.
-The response unit has an activation of 1,0 or -1 .

The output of the perceptron network is given by;
y = f (yin)

where f (yin) is activation function and is defined as;

The perceptron learning rule is used in the weight updation
between associator unit and response unit.
The error calculation is based on the comparison of the val-
ues of targets with those of the calculated outputs.

The weights will be adjusted on the basis of the learning rule if an
error has occurred for a particular training pattern.

wi (new) = wi (old) + α txi
b(new) = b(old) + α t

where,
t= target value(+1or 1)

α = learning rate

If no error occurs, there is no weight updation and training process
may be stopped

The weights will be adjusted on the basis of the learning rule if an
error has occurred for a particular training pattern.

wi (new) = wi (old) + α txi
b(new) = b(old) + α t

where,
t= target value(+1or 1)

α = learning rate

If no error occurs, there is no weight updation and training process
may be stopped

Figure : A perceptron network with its three units

Learning Rule

A finite n number of input training vectors with their asso-
ciated target values; x(n) and t(n).
The output y is obtained on the basis of the net input cal-
culated and activation function being applied over the net
input.

A finite n number of input training vectors with their asso-
ciated target values; x(n) and t(n).
The output y is obtained on the basis of the net input cal-
culated and activation function being applied over the net
input.

Perceptron Learning Rule
Convergence Theorem

 “If there is a weight vector W, such that f(x (n) W)=
t(n), then for any starting vector w1, the perceptron
learning rule will converge to a weight vector that gives
the correct response for all training patterns, and this
learning takes place within a finite number of steps
provided that the solution exists”

 “If there is a weight vector W, such that f(x (n) W)=
t(n), then for any starting vector w1, the perceptron
learning rule will converge to a weight vector that gives
the correct response for all training patterns, and this
learning takes place within a finite number of steps
provided that the solution exists”

Architecture

Figure : Single classification perceptron network

 Perceptron has sensory, associator and response unit
 In this architecture only the associator and response

unit is shown and sensory unit is hidden because only
the weights between the associator and the response
unit are adjusted
 Input layer consists of input neurons from X1…Xi…Xn
 There always exist a common bias of 1
 This is a single layer network

 Perceptron has sensory, associator and response unit
 In this architecture only the associator and response

unit is shown and sensory unit is hidden because only
the weights between the associator and the response
unit are adjusted
 Input layer consists of input neurons from X1…Xi…Xn
 There always exist a common bias of 1
 This is a single layer network

Flowchart

Perceptron Training Algorithm for Single Output Class

Perceptron Training Algorithm for Multiple Output Class

Perceptron Network Testing Algorithm

Problems
1.Develop a perceptron for the AND function with bipolar inputs and
targets

Linear Separability

Problem 2

Implement AND function using
perceptron with 2 epochs

 The final weights and bias after epoch 1 is used as the
initial weight and bias for the second epoch
 w1 = 1, w2= 1, b= -1

Problem 3 Implement OR function with binary inputs and
bipolar targets using perceptron training algorithm up to 3
epochs

Adaline-Adaptive Linear NeuronAdaline-Adaptive Linear Neuron

Topics in Adaline

 Introduction
 Theory
 Delta Learning Rule
 Architecture
 Flowchart for training process
 Training algorithm
 Testing algorithm

 Introduction
 Theory
 Delta Learning Rule
 Architecture
 Flowchart for training process
 Training algorithm
 Testing algorithm

Introduction
 Adaptive Linear Neuron/ Element
 Single layer ANN developed by Widrow& Hoff at

Stanford University in 1960
 Based on Mc-Culloch Pitts neuron
 Net input is not passed through activation function for

weight updation ie. Δw=α (t-yin) xi

 Used as a classifier for binary classification
 Can learn iteratively and has linear decision boundary.

 Adaptive Linear Neuron/ Element
 Single layer ANN developed by Widrow& Hoff at

Stanford University in 1960
 Based on Mc-Culloch Pitts neuron
 Net input is not passed through activation function for

weight updation ie. Δw=α (t-yin) xi

 Used as a classifier for binary classification
 Can learn iteratively and has linear decision boundary.

Adaptive Linear Neuron(Adaline) Theory

The units with linear activation function are called linear
units.
A network with single linear unit is called an Adaline.
It uses bipolar activation for its input signals and its target
output.
The weights between the input and the output units are
adjustable.
Adaline is a net which has only one output unit.
It is trained using delta rule.

The units with linear activation function are called linear
units.
A network with single linear unit is called an Adaline.
It uses bipolar activation for its input signals and its target
output.
The weights between the input and the output units are
adjustable.
Adaline is a net which has only one output unit.
It is trained using delta rule.

Perceptron Adaline
 Uses perceptron learning rule
 Learning rule originates from

Hebbian assumption
 Learning rule stops after a

finite number of steps
 If there is error ,weight and

bias are adjusted using
wi(new)= wi(old)+α t xi

bi(new)= bi(old)+α t
 Does not allow real values in

output
 Thresholding activation

function

 Uses Delta learning rule
 Delta rule derived from

gradient –descent method
 Gradient –descent method

continues
 If there is error ,weight and

bias are adjusted using
wi(new)= wi(old)+α (t-yin)xi

bi(new)= bi(old)+α (t-yin)
 Allow real values in output

 Linear activation function

 Uses perceptron learning rule
 Learning rule originates from

Hebbian assumption
 Learning rule stops after a

finite number of steps
 If there is error ,weight and

bias are adjusted using
wi(new)= wi(old)+α t xi

bi(new)= bi(old)+α t
 Does not allow real values in

output
 Thresholding activation

function

 Uses Delta learning rule
 Delta rule derived from

gradient –descent method
 Gradient –descent method

continues
 If there is error ,weight and

bias are adjusted using
wi(new)= wi(old)+α (t-yin)xi

bi(new)= bi(old)+α (t-yin)
 Allow real values in output

 Linear activation function

Delta rule for single output unit

Also known as Least Mean Square(LMS) rule or
Widrow Hoff rule.

.
Widrow Hoff rule vs Perceptron learning rule:
1 Perceptron learning rule originates from the Hebbianassumption

while the delta rule is derived from the gradient descent method.

Also known as Least Mean Square(LMS) rule or
Widrow Hoff rule.

.
Widrow Hoff rule vs Perceptron learning rule:
1 Perceptron learning rule originates from the Hebbianassumption

while the delta rule is derived from the gradient descent method.
2 Perceptron learning rule stops after a finite number of learning

steps. But the gradient descent approach continues forever.
Updates the weights so as to minimize the difference between
the net input and the target value.

 Delta Rule in the case of Several Output Units

Architecture

Flowchart of training process

Training algorithm

Step 0 : Weights and bias are set to some random values but
not zero. Set the learning rate parameter, .
Step 1 : Perform Steps 2-6 when stopping condition is false.
Step 2 : Perform Steps 3-5 for each bipolar training pair;
s : t .
Step 3 : Set activations for input units i = 1 to n :

xi = si

Step 4 : Calculate the net input to the output unit:

Step 0 : Weights and bias are set to some random values but
not zero. Set the learning rate parameter, .
Step 1 : Perform Steps 2-6 when stopping condition is false.
Step 2 : Perform Steps 3-5 for each bipolar training pair;
s : t .
Step 3 : Set activations for input units i = 1 to n :

xi = si

Step 4 : Calculate the net input to the output unit:
yin

Step 5 : Update the weights and bias for i = 1 to n :
wi (new) = wi (old) +α (t- yin)xi

b (new) = b(old) +α (t- yin)
Where α lies between 0.1 and 1.0

Step 6 : If the highest weight change that occurred
during training is smaller than a specified tolerance then
stop the training process; else continue.

Step 5 : Update the weights and bias for i = 1 to n :
wi (new) = wi (old) +α (t- yin)xi

b (new) = b(old) +α (t- yin)
Where α lies between 0.1 and 1.0

Step 6 : If the highest weight change that occurred
during training is smaller than a specified tolerance then
stop the training process; else continue.

Testing algorithm

Step 0 : Initial weights is equal to the final weights obtained
during training.
Step 1 : Perform Steps 2- 4 for each bipolar input vector; x.
Step 2 : Set activations of the input units to x.

Step 3 : Calculate the net input to the output unit: yin

Step 0 : Initial weights is equal to the final weights obtained
during training.
Step 1 : Perform Steps 2- 4 for each bipolar input vector; x.
Step 2 : Set activations of the input units to x.

Step 3 : Calculate the net input to the output unit: yin

Step 4 : Apply the activation function over the net input
calculated:

Problems

Total mean square error after each epoch is given as

Network architecture of ADALINE

Madaline
 Stands for Multiple Adaptive Linear Neuron
 Developed by Ridgway, Hoff and Glanz
 Combination of Adalines
 Also called multilayered Adalines
 Madaline= i/ps+ Adaline elements+ o/p
 Training process of Madaline is similar to that of

Adaline

 Stands for Multiple Adaptive Linear Neuron
 Developed by Ridgway, Hoff and Glanz
 Combination of Adalines
 Also called multilayered Adalines
 Madaline= i/ps+ Adaline elements+ o/p
 Training process of Madaline is similar to that of

Adaline

Architecture

Training Algorithm

Back Propagation NetworkBack Propagation Network

Topics in BPN

 Introduction
 Theory
 Architecture
 Flowchart for training process
 Training algorithm
 Testing Algorithm
 Learning factors of BPN

 Introduction
 Theory
 Architecture
 Flowchart for training process
 Training algorithm
 Testing Algorithm
 Learning factors of BPN

Introduction

 Most common network in real-time applications
 Multilayer feed forward network
 Error is propagated backward from output unit to

hidden unit
 Uses continuous differentiable activation function
 Learning rule is Gradient –descent method

 Most common network in real-time applications
 Multilayer feed forward network
 Error is propagated backward from output unit to

hidden unit
 Uses continuous differentiable activation function
 Learning rule is Gradient –descent method

Back PropagationNetwork -Theory

This learning algorithm is applied to multilayer feed forward
networks consisting of processing elements with continuous
differentiable activation functions.
The networks associated with back propagation learning
algorithm are called back propagation networks(BPNs).
Algorithm provides a procedure for changing the weights to
classify the given input patterns correctly.
It uses gradient descent method .
This is a method where the error is propagated back to the
hidden unit.

This learning algorithm is applied to multilayer feed forward
networks consisting of processing elements with continuous
differentiable activation functions.
The networks associated with back propagation learning
algorithm are called back propagation networks(BPNs).
Algorithm provides a procedure for changing the weights to
classify the given input patterns correctly.
It uses gradient descent method .
This is a method where the error is propagated back to the
hidden unit.

 Generalization is one of the major advantage of BPN-
ability of the model to respond to new data/ unknown
data and make accurate predictions
 Complexity in training of the network increases as the no

of hidden layers increases
 Training of BPN is done in 3 stages/ phases
1. Feed Forward of the input pattern (from i/p to hidden)
2. Back propagation of errors (from o/p to hidden)
3. Weight and bias updating

 Generalization is one of the major advantage of BPN-
ability of the model to respond to new data/ unknown
data and make accurate predictions
 Complexity in training of the network increases as the no

of hidden layers increases
 Training of BPN is done in 3 stages/ phases
1. Feed Forward of the input pattern (from i/p to hidden)
2. Back propagation of errors (from o/p to hidden)
3. Weight and bias updating

Architecture

Flow chart

Training Algorithm

Send zj to output unit

Testing Algorithm of BPN

Problem: Using BPN find the new weight of the network shown.
It is presented with the i/p pattern [0,1] and target o/p is 1. Use
learning rate α= 0.25 and binary sigmoidal activation function

 Initial weights are [v11 v21 v01]= [0.6 -0.1 0.3] and
[v12 v22 v02]= [-0.3 0.4 0.5] and
[w1 w2 w01= [0.4 0.1 -0.2]

Learning rate α= 0.25
Activation function is binary sigmoidal function

Given output sample [x1,x2]= [0,1] and target t=1

 Initial weights are [v11 v21 v01]= [0.6 -0.1 0.3] and
[v12 v22 v02]= [-0.3 0.4 0.5] and
[w1 w2 w01= [0.4 0.1 -0.2]

Learning rate α= 0.25
Activation function is binary sigmoidal function

Given output sample [x1,x2]= [0,1] and target t=1

