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Fuzzy Logic

[s an essential component of Soft Computing
Meaning of fuzzy -not clear ,noisy etc
Concept of fuzzy logic was conceived by Lotfi Zadeh

Fuzzy Logic is a multivalued logic which allow
intermediate values in between conventional
true/false ,yes/no, black/white etc.

Boolean logic is a two-valued logic deals with only
true/false ,yes/no, black/white



Fuzzy logic is a problem solving methodology
implemented in systems from simple ,small embedded
microcontrollers to complex, large netwoked
multichannel PC

Fuzzy logic can be implemented in hardware,software
or a combination of both

FL is a way to arrive at a conclusion based upon vague,
ambiguous, imprecise , noisy or missing information



= History of Fuzzy Logic

Fuzzy set thory was introduced by Professor Lotfi
Zadeh (USA) in 1965 as an extension of the classical set
thory

1972 First working group on fuzzy systems in Japan by

Toshiro Terano : \

1973 A paper on fuzzy algorithms by Zadeh (USA

1974 Steam engine control by Ebrah?m Mamdani (UK)

;E 1o many events, inventions and projects to mention
ill 1901

iAx ter 1991 fUZéy technology came out of scientific
aboratofies and’became an1hdustrial tool.

In the last two, decades, the fuzzy sets theory has
est hsllﬁe(} 1tself aﬁ a new gletlilogof,o%y fl(;r Za ing
with any sort of ambiguity and uncertainty.
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* Fuzzy Sets

A classical set X is a collection of definite, distinguishable
elements. Each element can either belong to not belong to
a set.

A crisp (classical) set is a set for which each value is either
included or not included in the set.

For a fuzzy set, every element has a membership value, and
so is a member to some extent.

The membership value defines the extent to which a
variable is a member of a fuzzy set.

The membership value is from o (not at all a member of
the set) to 1.
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Fuzzy system has many ingredients or elements
One or more fuzzy element [ Fuzzy set
Many fuzzy sets+ fuzzy elements [ Fuzzy rule

Set of fuzzy rules govern something [1Fuzzy inference
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understand the concept of fuzzy set it is better, if we first clear
our idea of crisp set.

X = The entire population of India.

H = All Hindu population = { h1, h > h e hL}

M = All Muslim population = { m,, m,, m,, ..., m,, }
C = All Christian population = { e ¢ CN}

Universe of discourse™ X

Here, All are the sets of finite numbers of

individuals. Such a set is called crisp set.
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Refreshing Crisp sets



Classical sets(Crisp

m A setis defined as a collection of objects, which share
certain characteristics.

m A classical set is a collection of distinct objects.

m Each individual entity in a set is called a member or an
element of the set.

m Collection of elements in the universe(U) is called whole
set.
Number of elements in U is called cardinal number.

Collection of elements within a set are called subsets.
Classical set is defined as the U is splitted in to two
groups:

m members and nonmembers.
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® There are different ways for defining a crisp or a
classical set:
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The list of all the members of a set may be given.
A={2,4,6,8 10}
The properties of the set elements may be specified.
A = {z| = is prime number < 20 }
The formula for the definition of a set may be mentioned.

g where n is a natural
A= {:E " " number less than 6 }

B The set may be detlllned on the basis of the results of a logical
operation.
A ={z| z 1s an element belonging to P AND Q }

There exist a membership function, which may also be used
to define a set.

1ifzc A

pafe) = 4\0 ifz ¢ A




AUB = {z|z € A or z € B}

Intersection

ANB = {z|r € A and =z € B}
Complement

A={z|lz ¢ A, z € X}
Difference(Subtraction)
AlIBor(A—B)={zlz€ Aandz ¢ B} = A— (AN B)
Bl|/Aor(B-—A)={zlz€ Bandz ¢ A} = B—(Bn A)
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roblems




(1) Find the power set and cardinality of the given set
X ={2,4,6}. Also find cardinality of power set.

Set X contains 3 elements, so,
R =&
The power set of X 1s,
P(X) ={¢,{2},{4},16},{2,4},{2,6},{4,6},{2,4,6}}
The cardinality of power set P(X) 1s,

np(x) = onx — 23 —8

N et s |
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e [2LetA={2,4,6,8) and B={6,8,10, 12}, Find AUB.

Solution We have AUB ={2,4,6,8, 10,12} -
Note that the common elements 6 and 8 have been taken only once while

AUB.
xample 1V LetA={aeioujandB={aq iy |, Show that A UB =A
Solufion We have, AUB={a ¢ i0u)=A

This example illustrates that union of setg A and 1ts subset B 1s the &'
itself, 1.¢., If BC A thenAUB = A, |



i Webwe AnB={ L3 1T]=B W
e BB A d twtANB =B



banple 20LetU= {1,23.45,67,8,9,10) mdA=(1,357,9) Fnd &'

Sluon We not that 2, 4,6 8, e e only elementsof U whih d notbelong )
A, Henee A ={ 24,6810




Panple ¥ LetA={1,23.45,6) B= (2.4 | FindA-Band B- A

Nolution We have, A- B = (1,35, since the elements 1,3, 3 belong to A but

10010 B and B~ A= { 81, since the element § belongs to B and ot o A
We note that A- B # B - A




m Commutativity

AVB=BUAANB=BnNA
m Associativity
AU(BUC)=(AUB)UC;ANn(BnC)=(ANnB)nC
m Distributivity
AU(BNC) =(AUB)N(AUC); An(BUC) = (AnB)U(ANC)
m [dempotency

AJUA=A;ANA=A
m Transitivity

ACBCC,then ACC
m Identity

AUp=A AN =¢
AUX =X ANnX =A



e

m Commutativity
AUB=BUA,AnNB=BNnA
B Associativity
AU(BUC)=(AUB)UC;An(BNC)=(AnB)nC
m Distributivity
AU(BNC) = (AUB)N(AUC); An(BUC) = (ANB)U(ANC)
B [dempotency

AUA=AANA=A
B Transitivity

ACBCC,then ACC
1 Identity

AUp=AANd=0¢
AUX=X:ANX = A




operties cont

m Involution

A=A
m Law of excluded middle
Al =X
m Law of contradiction
ANA=¢
m DeMorgan's law
| ANB|=AUB
|AU B|= AN B

Sl DOWILSADID PP |



m Mapping is a rule of correspondence between set theoretic
forms and function theoretic forms.

m A classical set is represented by its characteristic function,y(z),
where z is the element in the universe.

Union(AU B)

x4auB(z) = xa(z) V xB(z) = maz{xa(z), x5(z)}
Intersection(AnN B)

x4B(z) = xa(z) A x8(z) = min{xa(z), x5(z)}
Complement(A)

xzlz) = 1— xa(z)
Bl Containment
If AC B, then xa(z) < xB(z)
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Fuzzy Sets
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m Fuzzy sets may be viewed as an extension and generalization of
the basic concepts of crisp sets.

m [t allows partial membership.

m A fuzzy set 1s a set having degrees of membership between 1 and
0.

m Member of one fuzzy set can also be member of other fuzzy sets
in the same universe.

m Vagueness is introduced in fuzzy set by eliminating the sharp
boundaries that divide members from non—members in the
group.

m Possibility distribution: A fuzzy set A in the universe of dis-
course U can be defined as a set of ordered pairs and it 1s given

by,

A={(z,pa(z))|z € U}

=z here, pa() is the degree of membership of z in A. py(z) € [0,1]




m When U is discrete and finite, fuzzy set A is given as:

o {#A(ml) " pa(z2) M pa(zs3) o s P “A(x'i)}

T3 T2 z3 z;
B n is a finite value.
m The summation symbol (+) indicates the collection of each
element.
m When U is continuous and infinite, fuzzy set A is given as:

A=l .U'A(x)}

Z

m The integral sign () is a continuous function—theoretic
union for continuous variables.




e —— ——

m A fuzzy set is unwersal fuzzy set if and only if the value of
membership function is 1 for all members.

py(z)=1
B The universal fuzzy set can also be called whole fuzzy set.
m Two fuzzy sets A and B are equal if,

pa(z) = pp(z) for allz € U
m A fuzzy set A is an empty fuzzy set if and only if value of
membership function is 0 for all members.

pe(z) =0



Crisp Set vs Fuz

Crisp set

Fuzzy Set

et nee

l. F=(s,u(s))|s € Xand u(s)
1s the

degree of s.

2. It is a collection of elements.

2. It is collection of ordered pairs.

3. Inclusion of an element s & X
into S 1s crisp, that is, has strict
boundary yes or no.

3. Inclusion of an elememt

s € X into F is fuzzy, that is, if
present, then with a degree of
membership.




Fuzzy set Representation

A fuzzy set can be expressed as a set of ordered pairs

j \
Membership Uni
Furs S _ niverse or
y function universe of discourse
(MF)

* A fuzzy set is totally characterized by a membership
function (MF).

* MF maps each element of X to a membership grade
(or value) between 0 and one




Alternate Notation

® A fuzzy set A can be alternatively denoted as follows:

X is discrete .> = Z‘UA(XZ')/XZ'

x;eX

X is continuous HEE > A= IMA(X) /%
X

*Note that X and integral signs stand for the union of
membership grades; “/” stands for a marker and does
not imply division.

*Crisp Sets < Fuzzy Sets or in other words, Crisp Sets are
Special cases of Fuzzy Sets
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Example of Fuzzy set Representation

® A={ (x1,0.8), (x2, 0.3), (x3, 0.1), (x4, 0.9) }
® Can be represented in another way as

® A=0.8/x1+ 0.3/x2 + 0.1/X3 + 0.9/Xx4
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Example (Discrete Universe)

U = {1, 2, 3, 4, 5, 6, 7, 8} _ #courses a student may

take in a semester.

(1L,0.1) (2,03) (3,08) (41|  appropriate
(5,09) (6,05) (7902) (8901) # courses taken

Alternate Representation:

A==t e e E O e e e (e e



Basic Fuzzy Set Operations

® Union
® Intersection

® Complement
® Difference



Fuzzy Set Operations

B Union

paup(z) = maz(pa(z), pe(z)] = pa(z) vV (), for all

ze U

A




m /ntersection

pans(z) = min[pa(z), pe(z)] = pa(z) N pe(z), for dll
zeU




m Complement

pz=1-pu(z), forallz e U

1 Difference
pa-s(z) =min[ pa(z), ws(z)

ps - a(z) =min| ups(z), wpa(z))
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Problems
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Consider two fuzzy sets A and B. Find Complement, Union, Intersection

L_J1, 05 06 02 06
24=127T3 714 "5 T [
5 _J05 08 04 07 03
=12 T3 "1 T35 "6
Solution...
- {0+O.5+0.—1+0?ﬁ+0—1
417 3 . B
Complement ~ 2 4 ) 6
B_ 05+02 0.6 0.3 0.7
P=12 "3 7175 "6
Union

0.8 06 07 0.6




intersection
AMNB= {0'5 -+ o 4 s + 0.2 + 0'3} ~Minimum is used

2 3 4 5 6

42



(2) Consider 2 given fuzzy sets,

1 03 05 02
A_{g; 401 60? 81}
Bimofe— o o
fg -t Pl

Perform,

(a) Union

(b) Intersection
(c) Complement
(d) Difference



(a) Union

AU B = maz{pa(z), p5(z)}
_{1+o.4+o.5+1}
TR V8 8

(b) Intersection

AN B = min{pa(z), ps(z)}
05 03 01 0.2

-{2 4+6+8}

(c) Complement

. 0 07 05 038
A=1—paslz)={=+—+ 5 8}
05 06 09 O

— 1= == i
B=1-pp(s) = {0+ o+ o2 + 2}



(d) Dafference

— 05 03 05 0
P el of ol
Bl[A=BnNA={_+— : -

| {2+ 4 T 6 " 8}



(3) Consider 2 giwen fuzzy sets,

Perform,
(a) B, U By
(c)B1
(e)Bi| Bz

(9)B1N B2

(i)B1 U By

(k)Bz U By

1

B, =1

0.7 0.3

0.15

0

7
By ={

0+
1

0.6 0.2

1.5 +2.0+

2.5
01

+3
0

0
¥

1.0

15+2.0+

(b)B1 N By
(d) B2

(f)B1U By
(h)Bl HE
(7)B2n By

25

3.0

¥
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(a) BiUBy={—+——+ — ¢ 4 7 0}

1 0.75 03 0.15 0

10 " 1.5 " 20 " 25 "3
) 06 02 0.1 0
.0

(b) BIOB2:(){100J;515072'008255 13 }

e NN

(“’)32:{1-0*1;)5*%%+%%*?%5 :
(e)BllezBmE={—o %3;2.8:§5+3T1}
WRUA=RTS=N S 8 5
(9) BiNB=BiU By = {35+ 7+ 55+ 25 T30/



0O 025 03 015 O

(h) B1N By ={1]‘_0 +01-'755 +89 +02855 + 31.0}
- B _= . .
anmo L B 8 8
(1) B2N By = {5 %+ ot 3 g
e 0. 0 1
(k)B"’UB2’{1o 15+20+25 30°



/Wzsnecessary to compare two sensors based upon their

detection levels and gain settings. The table of gain settings
and sensor detection levels with a standard item being mon-
itored prowviding typical membership values to represent the

detection levels for each sensor is given in table:

Gawn | Detection level | Detection level
setting of sensor 1 of sensor 2

0 0 0

10 0.2 0.35
20 0.35 0.25
30 0.65 0.8
40 0.85 0.95
50 1 1

Perform union, intersection, complement and difference over

B e DO OO PO

" o

sensor 1 and sensor 2.




Grwen the unwverse of discourse,

X = {0, 10, 20, 30, 40, 50}

The membership functions for the two sensors in the discrete

form as,
D_{0+0.2+0.35+0.65+0.85+1}
YT T T 20 ' 30 ' 40 ' 5O
DZ_{O+O.35+0.25+0.8+0.95+1}
TR 10 20 30 40 50

D1 — Sensorl
D2 — Sensor2



(a) Union

0 035 035 08 095 1
By Da=mos| Dy, Dal =40+ 5+ 55 Y55+ B T Boe
(b) Intersection
: 02 025 065 08 1
D1 N Dy = min[Dy, Ds) = {— 6 " a0 40 +50}
(c) Complement
= 1 08 065 035 GI5 0
By =1 iBE = 2
T T B O B,
1 3 ; : i
$ T = { 10 20 30 " 10 +5o}



(d) Difference

— 0 02 03 02 005 O.
Di|Dy=DinDy={5+ 75+ # =m #mtre]

5 10 20 30
Do|Dy = DN Dy = {5 +

035 025 035 0.15 L0 ,
10~ 20 ' 30 ' 40 @ BO
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5. Design a computer software to perform iImage

processing to lo
two fuzzy sets

image are:

0.2
Pl;ym = {\ -+
tramn

0.5 0.3 0.8 0.1 }

02 .
— 132 04 s _o.z]

cate objects within scene. The
‘epresenting a plane and train

house

boat plane "~ hoyse



~ Find the following:

(a) Plane v Trg_.in:

(c) Plane;
(e) Plane|Train;

(g) Plane N Train;
(i) Plane N Plane:
(k) Train U Train

(b) Plgﬂt a Trgn.
(d) Train: |

(f) Plane Train.
(h) Plane _ Plane.

(j) Train Train.



s

= maX{ﬂPl;!ng(x)a uTr‘a.in (x)}
B [ 1.0 0.5 0.4 0.8 02

+ ———— ee—
train  bike T boat g plane  hoyg

(b) Plane N Train

= min {Au'P]gne (x), M Train (X)}

J_
l
:
|




(C) PLQIIC’—‘ I—H-Plame(x)
0.8
2 0.5 0.7

0.5

plane

0.8

- —

house




=

(e) PlgnelTrgin

= Plane N Train

= min{p.phm (x), s T (x)}
=10 05 03 05

——t \
——— —— ’

train  bike  boar plane

() Plane U Train

=1~ max{p.p[mc(X) l—lTralntﬂ}

l 0.6 ; 0.2
train blke boat = plane

-

0.1

‘/

houst



=

(g) r)'lénc M Trgjn
=1- min{ul’la_ne(x);ﬂTrain(x)}
0.8 0.8 0.7 0.5
= [trajn + ke T boar T+ plane ™
(h) Plane U Plane

= max{plane (%), g (x))
{ 0.8 0.5 0.7 0.8

— e

train  bike  boar

plane

(i) Plane N Plane

— mm{u. P]anc (x) ) ﬂm(x) }

0.2 05 .03 0.2
= {train + pike t boat T plane *

|
\

0.9
house

0.9

e

house

i



/M

(j) Train U Train

= max{ L Trin (%), U‘[}?;n(x)}
{ 1.0 " 0.8 0.6 0.5 0.8 ]

train  bike  boat  plane ¥ house

(k) Train N Train

= min{ﬂTrgan (), HTrain (x)}

J oo 02 04 0.5 0.2 |.
N {train T bike T boat T plane T House




Merations on Fuzzy Sets

m Algebraic sum

para(z) = pa(z) + ps(z) — palz).ps(z)
m Algebraic product

pa.s(z) = pa(z).pp(z)

m Bounded sum

pags(z) = min(l, pa(z) + pa(z)]
m Bounded difference

paos(z) = maz(0, pa(z) — pa(z)]




=~ (5) Consider 2 given fuzzy sets,

0.2 03 04
¥

A:{011=022=032
p_01 02 @
{1 2 3}

Find,

(a) algebraic sum

(b) algebraic product
(c) bounded sum

(d) bounded difference



=

(a) Algebraic sum

0;;.4+%(gf ) = [6uA($) 1; %g(a{)(l) p G[yA%z())é ua(z)]
=gyttt —{34—?{’7}
0.28 044 052
=13 *g Ty

(b) Algebraic product

pap(X) = pa(z)- ps(z)
0.02 0.06 0.08

1 3



(c) Bounded sum

ka@s(X) = min[l, pa(z) + ps(z)]
— min{l,{? + % + ? 1}
0.3° 05 0.6
ot Fiade e o

(d) Bounded difference

paoB(X) =O"iba$[8, {M(%)z— ka(z)]
= maz{0,{—+ —+ =5 1}}
0.1 . 0.1 .02
26 F I e T



Algebraic sum

The algebraic sum of fuzzy sets A and B is'a fuzzy set C.
C=A+B
where  pe(x) = iy (x) + pg(x) - B (%) pg(x)
Example
= o Gy O il
Let A= '—2" + 3 + 3
g 0.8 |
and B -,

then C =A+B p(x,)=05+02-0.
=0.7-0.1=0.6

\
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Algebraic product
The algebraic prodyet of two fuzzy sets

Example
_ D1 05 08 |
Let A o p) + 3 +—4—'S
§=—0-.—3:-+9:-5-.+9'.'§'+'!'
4 5 6 7
- S 028 108
then AB ===+



~—  Bounded sum
The bounded sum of two fuzzy sets A and B is denoted by

C=A®B
where  pc(x)=min [1, p A(X) * pp(x)]
The bounded sum for AZ; s

ho(x,) =min (1,0.5+0.2)=0.7
“C(xz) ST min (l’ 0.7 + O) = (.7
ue(xy) =min(l,1+0.8)=1

-~

C=AGB=T+'_3-+§'



e

, Bounded difference .
" The bounded difference of two fuzzy sets A and B is defined by

C=A©B

where ue(x)=min [1, p, (x) = pg(x)] or max [0, u,(X) - Bz

e.g max[0,0.3 -0.7] = max[0,-0.4]=0

hence 0 <p,(x)- Hg(x) <1 - 5 o805,
Let 2
The bounded difference for example 0.

=
-~
W=

-

o o]
(¥
u-‘g u‘

and

He(x,) =min (1, 05 0.2)=0.3
He(X,) =min(1,0.7-0)=0.7
Be(X3) =min(1,1-0.8)=0.2

Thus §=;;e§_,053+057+0.?2

a5




Power of Set A% |

Ha () = {H4(x )}

If @ < 1, then it is called dilation

If @ > 1, then it is called concentration .
The operations concentration and dilation are defined as

CON(A) = A? and DIL(A) = A"?

- 0802 03
Let A = 3 T T
| 049 025 004
then CON(A)= 5 3T T
. 07,044 084
and DILA =+ 7T



er of a fuzzy set

The a power of a fuzzy set A is a new set Aa with the MF

H o (X) = (1, ()"

Example
P A =1{(x,,0.4),(x,,0.6), (x,,0.8)}

="

A" ={(x,,0.16),(x,,0.36),(x,,0.64)}



uct of a two fuzzy sets

The product of two fuzzy sets A and B is a new set
A.B whose MF is defined as

Example
A={(x,,0.2),(x,,0.8),(x,,0.4)}
B ={(x,,0.4),(x,,0),(x;,0.1)}
Find A.B
Solution

A-B ={(x,,0.08),(x,,0),(x,,0.04)}



———ftquality =

Two fuzzy sets A and B are said to be equal A=B if

p,(x) = g (x)

Example

A={(x,,0.2),(x,,0.8)}

B ={(x,,0.6),(x,,0.8)}
C =1{(x,,0.2),(x,,0.8)}

A#B

A=C



ct of a fuzzy set with a

Multiplying a fuzzy set A by a crisp number a results in a new fuzzy set a.A with
the MF :

Hoq(X)=a.p(x)

Example

A={(x,,0.4),(x,,0.6),(x;,0.8)}

a=0.3
a.4={(x,,0.12),(x,,0.18), (x,,0.24)}



WPhiffsrence ——— o5

Difference of two fuzzy sets A and B is a new set A-B defined as:
A—Bb=A4AnB5

Example

£ &0 056 006)
B ={(x,,0.1),(x,,0.4),(x,,0.5)}

Find A-B
Solution

B ={(x,,0.9),(x,,0.6),(x,,0.5)}
A B—4-B-x 02,0605 (5,05



_ Cardinality of a fuzzy set
For a fuzzy set A the scalar cardinality |A|

1Al= X, mi(x)
x€ X

is defined as

is called the relative cardinality of A

|
S

Al



g
O— Cut or level cut

o — cut of a fuzzy set is the crisp set A that contains all
the elements of the universe of discourse X whose
membership grades in A are greater than or equal to
the specified value o

iellZO(

Strong o — cut
Strong o — cut is a crisp set such that

=



AL

M

s

Let X be the set of ages X = {5, 10, 20, 30, 40, 50, 60, 70, 80, 91}

Example 2.3a

_/Consider the following fuzzy set “Young”

1 1 08 05, 02 0.1}
Vg™ {5 *107720 730 T40 T 50

The level set or ot-cut sets are
Ay, = (S, 10, 20, 30, 40, 50]

ay, =[5, 10,20, 30, 40]

0 =[5, 10,20, 30] o, =[5, 10]
Cardinality |young|= (1+1+0.8+0.5+02+0.1]
= 3.6
Rlative cardinality = 2 "0.36

10



== \\
operties of Fuzzy Se

m Commutativity
AUB=BUAANnB=BnNnA
m Associativity
AUu(BUC)=(AUB)UC;ANn(BNnC)=(AnB)NnC
m Distributivity
AU(BNC) =(AUB)N(AUC); AN(BUC) = (ANnB)U(ANC)
m [dempotency

AUA=A:ANA=A
m Transitivity

ACBCC,then ACC
m [dentity

AUp=A,ANng=¢
AvX =X:ANnX =4



m Involution

A=A
m DeMorgan's law
|ANnB|=AUB
|AuB|=AnNnB



2.8 Algebraic operations on fuzzy sets

a. Cartesian product™ | « B
The cartesian product of two fuzzy sets A and B is a fuzzy set C denoted by A )

and-defined as | _ | |
77 C=AxB={nx)(ab)lacAbeB,pc(x) =min{p,(x), kp(Xx);

1 .1 ., 86
Let A =g T "mdB",er?.



Some Definitions

= o-cut, strong o -cut
® Support 5

® Core
® Normality

® Convexity
® Bandwidth

: ® Symetricit
® Crossover points y T

® Fuzzy singleton

80
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® Support

® The support S(A) of a fuzzy set A is the crisp set
of all the elements of the universal set (UOD) for
which membership function has non-zero value

S(A)={u € U/p,(u)>0}




o — cut (or a level) set

® The set of elements that belong to the fuzzy set
A at least to the degree a is called the a-level-set

ora-cutset , _ tlug(x) 2 e}

® Strong a cut Ay = {x’ﬂA(x) a}

An a-cut set is crisp or fuzzy?



Crossover point

® The element of the universal set, for which the
membership function has the value of 0.5, is
called a crossover point.

Crossover(A) = {x H4(x)= 0.5}




®Core:

® Is the set of all elements x in X that belong to
the fuzzy set A such that 1, (X)=1:

Core(A) = {x|p ((x) =1




Height of a fuzzy set

The height of a fuzzy set A, hgt(A) is given by a

supremum of the membership function over all u€U
hgt(A) = sup, p,(u)

(Supremum in this definition means the highest possible

(or almost possible) degree.)

Normality

A fuzzy set is normal if its core is nonempty. In other
words, we can always find a point x ¢ X such that

p, (x)=1
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Fuzzy set operations ( Recap)

m Complement
fig=1—jia(z), for allz € U
m Algebraic sum
pa+s(z) = pa(z) + pe(z) — palz).pe(z)
m Algebraic product

pas(z) = pa(z).us(z)

m Bounded sum

pags(z) = min(l, pa(z) + pa(z)]
m Bounded difference

paos(z) = maz(0, pa(z) — pa(z)




Properties of the fuzzy sets

® The properties of the classical set also suits for the
properties of the fuzzy sets. The important properties of
fuzzy set includes:

® Commutativity
® AUB=BUA, ANB=BNA
® Associativity
LB BT Rl
® Distributivity
AU (BNC)=(AUB) N (AUCQ),
AN (BUC) = (ANB) U (ANC).

88
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Power of a fuzzy set A“.

Ha" () = {1, )}

If @ < 1, then it is called dilation
If @ > 1, then it is called concentration



/mﬁﬁmf%/

~—ldempotence

Transitivity :

fAS B B<S CthenA &
C

Involution :
(A°) =A

De Morgan’s law :

(AN B)=A° U B¢
(AU Bf=A°N B°



(5) Consider 2 given fuzzy sets,
0.3 04

0.5

0.2
A={—+

2 * 3 +
01 .02 032
+

B
0.1

B =4 3 + 5 + 3
Find,

(a) algebraic sum

(b) algebraic product

(c) bounded sum
(d) bounded difference

4

¥
¥



(a) Algebraic sum

pars(X) = [ﬂA(m)‘l'#B(m)]—[ﬂA(m) pa(z)]

0.3, 05 06 , 006" 008" 0.
=7 +t5 13 } { 2 gt
028 0.44 052
= (P2 2 +2}

(b) Algebraic product

pas(X)=pa(z)- ps(z)
N {0 .02 0.06 0.08 0.5
. 1

+2+3+4}




(c) Bounded sum

kagp 5(X) = min[l, ua(z) + p5(e)
_ min{l,{of . 055 4 0.6 4 11.15}}

_{0.3 by 0.5 " 0.6 - 1}
T E R 2 3 4

(d) Bounded difference

paoB(X) =0'"1W$[8, {M(fg)z— #3(593)]
P {0.1 L0102 0.5.}
e 2 3 4
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Fuzzy Relations



_ Cartesian Product———

The Cartesian product of two sets A and B, denoted

A x B, is the set of all possible ordered pairs where the
elements of A are first and the elements of B are second.

In set-builder notation,

AxB={(a,b):a€= Aand b € B}.



m Consider,

X={p,qr}
Y = {2,4,6}

Cartesian product of these two sets, X x Y, s,
{(r,2),(r,4),(p,6),(4,2),(9,4),(4,6),(r,2), (r,4), (r,6)}



® *The elements in two sets A and B are given as
® A={o,1}and B={a, b, c}.

® Various Cartesian products of these two sets can be written
as shown:e

® A xB ={(o,a), (o, b), (0, ¢), (3, a), (1, b), (1, )}

$ L - 5 e e

® A xA =A2={(0,0),(0,1), (1, 0), (1,1)}

® B xB =B2={(a, a), (a, b), (a, ¢), (b, a), (b, b), (b, ¢), (c, a),
® (¢, b), (¢, 0)}

® Note that A xB= BxA i.e cartesian product is not
commutative



® A subset of the cartesian product A1 X A2 . ......X Ar
is called an r-ary relation over A1,A2, . ...... AT

The most common case is when r=2 the relation is
subset of cartesian product A1 X A2.( binary relation)

This means a binary relation from A1 into A2.

If three, four, five sets are involved in the subset, then we
call them ternary, quaternary and quinary relations.



- Classical Relations ™

/ V

m An rary relation over Tl subset of the

Cartesian product A; A, it A .

r

I [ T ary relation

2 binary

3 ternary

4T quaternary
B quinary




_—

— m Consider,

X ={p,q,7}
Y = {2,4, 6}

Cartesian product of these two sets, X x Y, is,

{(p,2),(p,4),(p,6),(q,2),(q,4),(q,6),(r,2),(r,4),(r,6)}
From this set one may select a subset such that,

R ={(p,2),(9,4),(r,4),(r,6)}

Relation matrix is,

1w
O O = N
== O
= O O o




ifferent ways t to represent a relation

® Matrix form
® Coordinate Diagram
® Mapping of the Relation



R ={(p,2),(g,4),(r,4),(r,6)}

Relation matrix is,

O O = N
= O
_ O O O




oordinate diagram of the relation

R= {(P, 2)3 (.Q3 4)’ (7‘, 4): ('7", 6)}

H | |
6F---- - - - .
I | I
| | |
1 | I
i
s : 4 =
I | I
| | I
1 | I
2k === = i
1 | I
I | I
| | I
] | ]
P q r



WM

R ={(p,2),(q,4),(r,4),(r,6)}
A

q ® —30 ¢

e




Cardinality of classical relation
e ——————

When the cardinality of,
X =n,and
== i
then the cardinality of relation R between the two
universe 1s,
fexy="cx 'ty
The cardinality of the power set is given by,

n =2(nX X nY)
e



° o O
g _ v Lg i _
. AY —— ' . [ -—f'
e, - =
,,/4‘ & & = SG1—aAA

m Union
RUS — xrus(z, v); xrus(z, y) = maz[xr(z, ), xs(z, ¥)]

m Intersection

RN S — xr-s(z, y); Xrns(z, ¥) = min[xr(z, v), xs(z, ¥)]
m Complement
R — x5(=, 9); xz(=:y) = 1—xalz, y)
m Containment

RC S — xr(z,v);xr(z,v) < xs(z, v)

m [dentity

¢ — ¢R and X — ER



Properties of crisp relations

Commutativity

* Associativity
*Distributivity
*Involution
*Jdempotency

* Excluded middle laws

e DeMorgan s law



position ot Classi lons

m The operation executed on two compatible binary relations to
get a single binary relation is called composition.

B Let R be a relation that maps elements from X to Y and S
be a relation that maps elements from Y to Z. R and S are
compatible if,

RCXxYandSCYx2Z

m The composition between the two relations is denoted by Ro S.



TBample

m Consider the universal sets,

X = {al’ ap, a’3}
Y = {bI; b27 b3}
Z = {Cl) C2, C3}

Let the relations R and S be formed as,

R=XxY ={(a1, b1), (a1, b2), (az, b), (as, b3)}
8= & = {(bh Cl):(b21 C3)’(b32 CZ)}

=0 9= {(al, Cl);(a% C3)’ (CL3, 62)3 (a’l’ 63)}



[llustration of relation R and S




The composition operations are of two types:

Max min composition

Max product composition
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Max-min Composition

B The max—min composition is defined by the function theo-
refic expression as:

T'=Hod
xr(z,2) = V{x&(z,y) A xs(y, 2)}



Max-product Composition

B The max—product composition is defined by the function
theoretic expression as:

T = 1Ko S
x r(z,z) = V{xr(z,v) - xs(y, 2)}



Example:

Given
X={1,3,55Y={1,35LR={(x,y)ly=x+2}S={(x,y)lx <y}
Here, Rand Sison X x Y.

Thus, we have
A = {(1,8),(3,5)}
S=1{(1,8),(1,5),(3,5)}

1 3 5 1 3 5

1] 8 1 0 g |9 3 A

R= 310 0 1| andS= 310 0 1
51000 51000

1 3 5

110 0 1

Using max-min composition R o S= 31000
5|0 00
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Properties of Composition Operation

Associative | (RoS)oM = Ro(So M)
Commutative RoS=S0oR
Inverse (Ro 8 =8 1o B




m Fuzzy relations relate elements of one universe to those of an-
other universe through the Cartesian product of the two uni-
Verses.

m Based on the concept that everything is related to some extent
or unrelated.

m A fuzzy relation is a fuzzy set defined on the Cartesian product
of classical sets,

X Ko XK'}
where tuples,

(21,22, ..., Tn)
may have varying degrees of membership,

ﬂR(ml) 3)2, veey mn)
within the relation.

‘I'R(mlx L2,y -y $n)
R(Xy, X5, ... Xn) = le,\:;ng....\.Xn

(21, T2, .-, Tn)

, T € X



Representation of Fuzzy Relations

® Fuzzy Matrix

® Simple Fuzzy Graph
® Bipartite Graph



uzzy Matrix

m Let,
X =43y, 3, cup@p b and Y =4y, ¥, Ya )

Fuzzy relation R(z,y) can be expressed as an n x m matrix

as.
wr(z,v1) pr(z1,Y2) o wR(Z1 Ym) |
uwr(22, 1) pr(z2,%2) ..o.. pR(22, Ym)
Rz, 9) =
1R(Zn, Y1) MR(Zn, Y2) oo LR(Zn, Ym)

m The matrix representing a fuzzy relation is called Fuzzy matriz.



Example:

X = { typhoid, viral, cold } and Y = { running nose, high temp,
shivering }

The fuzzy relation R is defined as

typhoid
viral
cold

runningnose hightemperature  shivering

0.1
0.2
0.9

0.9
0.9
0.4

0.8
0.7
0.6




zy Relations Example

m Let,

X = {z, x, z3, 71} and Y = {y1, ¥2, U3, va}

Let R be a relation from X and Y given by,
R 0.2 0.4 0.1 0.6 1.0 0.5

- - - - -
(z1,93)  (21,92) (22,%2) (22,93) (@3,93) (23,1)
Fuzzy matrix for relation R is,

Y1 y2 y3
z [ 0 04 0.2

T2 0O 0.1 0.6
zz | 0.5 0 1.0

— —




uzzy graph

m Fuzzy graph is a graphical representation of binary fuzzy rela-
tion.

m Each element in X and Y corresponds to a node in the fuzzy
graph.

m The connection links are established between the nodes by
the elements of X x Y with nonzero membership grades in

R(X, Y)
®m The links may also be present in the form of arcs.

m Links are labeled with the membership values as pg(z;, y;).



——

m Consider,

X ={m, 2, 73, T4}
Binary fuzzy relation on X as,

—

Ty @2 T3 T4
02 0 05 O

0 03 07 0.8
01 0 04 O
0O 06 0 1

-






Bipartite Graph

® When z # y, the link connecting the two nodes 1s an undirected
binary graph called bipartite graph.

m Each of the sets X and Y can be represented by a set of nodes
such that nodes corresponding to one set are clearly differenti-
ated from the nodes representing the other set.



e

Example

Fuzzy matrix for relation R is,

v y2 y3
& | 0 04 027
0 01 0.6
s |05 0 1.0

3




P

Bipartite Graph




Fuzzy Relations

A fuzzy relation R is a 2D MF:

R={((x, ), tp(x,))] (x,y) € X xY}



zzy Cartesian Produ

Suppose
A is a fuzzy set on the universe of discourse X with pa(x)|x € X

B is a fuzzy set on the universe of discourse Y with ug(y)|ly € Y

Then R=Ax Bc X x Y ; where R has its membership function given
by pa(X.y) = paxs(X,y) = min{pa(x), ns(y)}

Example :
A=1{(a1,0.2),(a,0.7),(as,0.4)}and B = {(b1,0.5),(b2,0.6)}
by b
aq i 02 02 i
R=AxB-= a | 0.5 06
a | 0.4 04 |




Operation on Fuzzy Relations

m Union
,‘l’RUS(mi y) == ma.:c{y,R(m, y)’ /I'S(m: y)}
® Intersection

prns(z, y) = min{ur(z, y), ps(z, y)}
m Complement

pg(z,y) =1— pr(z,y)
m Containment

RC S = ur(z,y) < us(z,y)

m Inverse
R~ Y(y,z) = R(z,y) for all pairs (y,z) € ¥ x X
m Projection

priy|(Z, y) = maz.pr(z, y)



e

Properties of Fuzzy Relations

m Commutativity
m Associativity

m Distributivity
m Identity

m [dempotency

m DeMorgan's law
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FUZZY COMPOSITION



F/w/

uzzy Compositions

m Let A be a fuzzy set on universe X and B be a fuzzy set on
universe Y.

m the cartesian product over A and B results in fuzzy relation
R.1e,

Ax B=R
where
RCXXY

m The membership function is given by,

1r(z,y) = paxs(z,y) = min|pa(z), ps(Y)]
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Fuzzy Composition Techniques

® Max-min Composition
® Max-product Composition
® Min-max Composition



P

m Maz—min composition

m Let R be fuzzy relation on cartesian space X x Y and S be fuzzy
relation on cartesian space Y x Z.
B Max—min composition of R(X, Y) and S(Y, Z),
pr(z,2) = pros(e, 2)

= MaZyc Y{mm[“R(m’y)’“S(y,z)]}
= Vyey[per(e,y) Aus(y,2)Vz € X 2 € Z



K

X=(x1,X2,X%3); Y = (y1,¥2): Z = (24, 22, Z3);

RoS=

pRos(X1. y1) = max{min(xy,y1), min(ys, z1), min(xy, y2), min(yz, z1)}
= max{min(0.5,0.6), min(0.1,0.5)} = max{0.5,0.1} = 0.5 and so on.

Y1 Y2
i [ 086 @1 ]
x | 0.2 09
x5 | 0.8 06

Z4 22 Z3
yvi | 06 04 0.7
yo [0.5 0.8 0.9]
4 Z2 Z3
x [ 0.5 04 05
x» | 0.5 0.8 0.9
x3 | 0.6 0.6 0.7
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8 Maz-product composition
m Let R be fuzzy relation on cartesian space X x ¥ and S be fuzzy

relation on cartesian space Y x Z.
p Max-min composition of R(X, Y) and (Y, Z),

MT(SC,Z) = “Rﬂs(m:z)

= magycy{ua(, y) - ps(y, 2)}
= Vyer[ur(z, y) - ps(y,2)Va € X,z € 2




Consider fuzzy relations:

Ny 21 22 22
R= T 0.7 0.6 G = Y1 0.8 0.5 04
A To 08 03 |’ = Yo 0.1 06 07 |

Find the relation 7' = R o § using max min and max-product composition.



Solution. Nax-Nin Composition

pr{ry.z;) = max [min (0.7, 0.8). min (0.6,0.1)]
= max [0.7,0.1]
= 0.7,

max [min (0.7, 0.5), min (0.6, 0.6)]
max [0.5, 0.6]
- —- 0-6'
max [min (0.7,0.4), min (0.6, 0.7)]
max [0.4, 0.6
0.€
max [min (0.8, 0.8), min (0.3,0.1)]
max [0.8,0.1]
0.8,
max [min (0.8, 0.5). min (0.3, 0.6)]
max (0.5, 0.3]
=10.35.
pp (re. z3) = max [min (0.8, 0.4), min (0.3, 0.7)]
==

pr(xry.=2)

pr{xry. =3)

pr({ra,. =)

pr (xra. z2)

. o | <2 22
s = TFITO.7 0.6 0.€
o~ 2lo8 05 04]°



NMax Product Composition

max [min (0.7 x 0.8), min (0.6 < 0.1)]
max [(L.56. 0.06]
0.56,
max [min (0.7 < 0.5), min (0.6 < 0.6)]
max [0.35, 0.36]
.36,
per {ry.23) = max min (0.7 = 0.4), min (0.6 < 0.7)]
— max [0.28,0.42 ]
— 042

pr (xa.2zy) = max [min (0.8 x 0.8), min (0.3 x 0.1)]
max [0.64, 0.03]

0.64.

max [min (0.8 x 0.5), min (0.3 x 0.6)]
= max [0.40, 0.18]

= 0.40,

pr{xry.zy)

pr (y.22)

pr (2. 22)

pr (o, z3) = max [min (0.8 x 0.4), min (0.3 < 0.7)]
= max [0.32, 0.21]
= 0.32.
e [0.56 0.36 0.35]
~ 064 040 032"



P

B Min—maz composition
B Let R be fuzzy relation on cartesian space X x Y and S be fuzzy

relation on cartesian space Y x Z.
# Max—min composition of R(X, Y) and S(Y, Z),
pr(2,2) = ppos(2,2)

= mz'nye Y{max[ﬂR(m; y))“S(y)z)]}
= Ney[ur(z, y) vV ps(y,2)Ve € X,z € 2
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Properties of Fuzzy Composition

RoS=SoR
(HaS) = §+aR
B (RoS)oM=Ro(SoM)



Problems

(1) Constider the following two fuzzy sets:

03 0.7 1
A={—+—+ —} and
Ty T I3

0.4 0.9
B={—+4 —
{yl y‘z}

Perform the cartesian product over these gwven fuzzy
sets.



min[0.3,0.4] = 0.3
min[0.3,0.9] = 0.3

pr(21, y1) = man|pa(z), ps(y1).
pr(z1, y2) = man|pa(z), Ls(ye)
Lr(z, y1) = min[pa(xp), pe(y1)] = man[0.7,0.4] = 0.4
pr(22, ¥2) = man(pa(2z), p(y2)] = min[0.7,0.9] = 0.7
Lr(zs, v1) = min[pa(zs), us(y1)] = min[1,0.4] = 0.4
/.I,R(:Dg,, yz) = min[uA(xg),uB(yg)] = m'in[l, 0.9] =0.9




#R(zl) yl) = man
pr(z1, y2) = min
(22, 1) = min
pr(22, y2) = min
pr(zs, y1) = min[ua(zs), us(y1)] = min[1,0.4] = 0.4
pr(zs, y2) = min[ua(zs), L(y2)] = man|1,0.9] = 0.9

v1 Y2
& [0.8 03
R=AxB= 4 | 0.4 0.7

pa(z), pB(y1)
(), kB(Y)
a(z2), k(Y1)

1a(@2), B(Y2)!

zs | 0.4 0.9

man
man
man
man

0.3,0.4
0.3,0.9
0.7,0.4

0.7,0.9

= 0.3
= 0.3
=04
=7



(2) Two fuzzy relations are given by,

n v2

p_= [06 03]
= | 0.2 0.9

21 Z2 Z3

g_w /[ 1 05 03
" w | 0.8 04 07

Obtain fuzzy relation T as a composition between the
fuzzy relations R and S.



(a) Maz—man composition

pr(zy, 21) = maz{min[ur(z1, y1), ks(y1, 21)],
man[Lr(21, Y2), ks(¥2, 21)]}
= maz{min[0.6, 1], min[0.3, 0.8]}
= maz{0.6,0.3} = 0.6
pr(z1, 22) = maz{min{ur(z1, 1), Ls(y1, 22)],
man|Lr(T1, Y2), s( Y2, 22)]}
= maz{mn[0.6, 0.5], min[0.3, 0.4]}
— maz{0.5,0.3} = 0.5
pr(z1, z3) = maz{min|ur(z1, y1), Ls(y1, 23)],
min[ﬂR(mh y2)a “S(yzt 23)]}
= maz{min[0.6, 0.3], min[0.3,0.7]}
= maz{0.3,0.3} = 0.3



— /.LT(.’L‘Q,Zl) =

pr(z2,22) =

pr(x2,23) =

maz{ min[pr(22, Y1), ks(Y1, 21)],
man|ur(22, ¥2), ks( Y2, 21)]}

= maz{min[0.2, 1|, min[0.9, 0.8]}

= maz{0.2,0.8} = 0.8

maz{ min|pr(22, 1), ks(y1, 22)],

man|ur(22, y2), ks(¥2, 22)]}
= maz{mn[0.2, 0.5], min[0.9, 0.4]}

= maz{0.2,0.4} = 0.4
maz{min[pr(z2, 11), ks(y1, 23)

J
man|pr(22, Y2), Ls(Y2, 23)]}
= maxz{min[0.2,0.3], min[0.9, 0.7]}

= maz{0.2,0.7} = 0.7



21 22 23

w | 1 05 03

w |08 04 0.7

—

. ) 23 ]
0.6 05 03

0.8 0.4 0.7




Consider the following two sets P and D, which represent a set of
paddy plants and a set of plant diseases. More precisely

P = { P4, P>, P3, P4} a set of four varieties of paddy plants
D = {Dy, Dy, D5, D4} of the four various diseases affecting the plants

In addition to these, also consider another set S = {51, Sp, S3, S4} be
the common symptoms of the diseases.

Let, R be a relation on P x D, representing which plant is susceptible
to which diseases, then R can be stated as

Dy D, D3 Dy
p, [ 06 06 09 08 ]
P, | 0.1 0.2 09 0.8
P { 09 03 04 0.8
P, | 09 08 04 02 |
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Also, consider T be the another relation on D x S, which is given by
S S S5
D, ] 01 02 0.7 09 |
p | 1.0 1.0 04 0.6
p; { 0.0 0.0 05 09
p, | 09 1.0 08 0.2

Obtain the association of plants with the different symptoms of the
disease using max-min composition.




P, | 01 02 09 08
P, | 09 03 04 08
P, | 09 08 04 02

Hint: Find R o T, and verify that

S

P, [ 0.8

N P> 0.8

oK = P, | 0.8
P, | 0.8

Sz
0.8
0.8
0.8
0.8

S3
0.8
0.8
0.8
0.7

D,
D»
D3
Dy

Sy
0.9
0.9
0.9
0.9

S
0.1
1.0
0.0
0.9

S
0.2
1.0
0.0
1.0

S3
0.7
0.4
0.5
0.8

S4
09
0.6
0.9
0.2




eal life Example-2

(3) For a speed control of DC motor, the membership func-
tions of series resistance, armature current and speed are
quven as follows:

04 06 10 0.1
SR=135" % " 100 " 120
i {0.2 4 0.3 i 0.6 i 0.8 i 1.0 i 0.2
~'20 40 60 80 _ 100 120
~ .0.35 + 0.67 1 0.97 N 0.25}
~ 500 1000 1500 1800

Compute relation T for relating series resistance to motor
speed. Perform maz—min composition only.




30

B @5 Fe '@

100
120

=X =

20

60
80
100
120
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olerance and Equivalence Relations

©® Relations possesses various useful properties
® Three characteristic properties are :

® Reflexivity
® Symmetry
® Transitivity



® A relation is said to be reflective if every vertex ( node)
in the graph originates a single loop as shown

(2) O
N ) N

Figure Three-vertex node — retlexive property.



‘A relation is said to be symmetric if every edge pointing
~ from vertex i to vertex j , there is an edge pointing in the
opposite direction i.e. from vertex j to vertex i, where i,

=1,2,3.... Figure represents a symmetric relation

Figure Three-verrex node ~ symmetry property.



relation is said to be transitive i ﬁwypa%

edges in the graph- one pointing from vertex i to vertex j
and other pointing from vertex j to vertex k , there is an
edge pointing from vertex i to vertex k

()

1)

=

- I S— .
- —k_ﬂ -_-— - -

u 2 VvV . '
b > § 3/,

3

Figure Three-vertex graph — transitive property.
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. Classical Equivalence Relation

Let relation R on universe X be a relaticn from X to X. Relation R is an equivalence relation if the
three properties are satisfied:

1. Refleavity
2. Symmetry
3. Transiuvity
The function theoretic forms of representation of these properties are as follows:
1. Reflexivity

1 (x, %) = 1or(x,x;) € R

2. Symmetry

X7 (. x5) = xR (x5, %)
Le., (x,x) € R= (x,x;) € R



Vo Transiovaty

X)) and xop (vovg) = 1so xp (xg,ag) = |
ven () © Rloa) € Roso (o) € R

I'he best example of an equivalence relation 1s the relation of similarity among triangles,

~ Classical Tolerance Relation

o s

A tolerance relacion Ky on universe X is one where the only the properties of reflexivity and symmetry are
atisfied. The tolerance relation can also be called proximity relation, An equivalence relation can be formed
fom tolerance relation B by (# 1) compositions within itsell, where iy the cardinality of the set tha
defines Ry, here 1w X e,

R‘”' wRoRio ok - R

\— g’ Sy
Tolerance Fauivalence
relution

relatlon
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 Fuzzy Equivalence Relation

r Bbed fuzzy relation on universe X, which ma
= . ui\f'ﬁlc'

:m‘n‘b‘rs

| Reflexivity

\ce relation if all the three properties — ps elements from X to X, Relar; i
properties — reflexive symm on R will be a fuzzy
» ymmetry and transitiviey — are satisfied. The

hip function theoretic forms for these p :
roperties are re
presented as follows:

Heplxix)=1 VxeX
If this is not the case for few x € X, then R(X, X) is said to be irreflexive

1. Symmetry
g (xi x) = g (x;, x;) for all xpx; € X

if this is not satisfied for few x;, x; € X, then R(X, X) is called asymmetric
3. Transitivity .
g G xp) =A; and  upg(x,xg) =4z
=> g (x5, x) =A

where
A= min [A;,A2]

ie., uglxix) = ma:csr}iin[ug(x.-.ﬁ). pg (3] Vi, x) € X
7

this is nor satisfied for some members of X, then R(X, X) is

This can also be called max-min transitive. If
the members (x;, x3) € X2, then the

nontransitive, If the given transitivity inequality is not satisfied for all
relation is called as antitransitive.
The max-product transitive can also be defined. It is given by

g (xiv x8) = max - g (xin2g) * KR (o 2001 Yl 3¢) € X
X5

The equivalence relation discussed can also be called similarity relation.



pr— v/

Fuzzy Tolerance Relation

-

A binary fuzzy relation that possesses the properties of reflexivity and symmetry is called fuzzy tolerance
relation or resemblance relation. The equivalence relations are a special case of the tolerance relation. The
fuzzy tolerance relation can be reformed into fuzzy equivalence relation in the same way as a crisp tolerance
relation is reformed into crisp equivalence relation, i.e.,

- =RioRioof= R

o g
Fuzzy Fuzzy
tolerance equivalence
relation ' relation

where “n” is the cardinality of the set that defines &;.



T - . , ‘ I
Which of the following are cquivalence relatto

ns:

—1

e ——
—— T —
————

N.bc

l) cnplc
() People

(i) Pormnes on a map

(v) Lines n plane
peometry

(v} Posiave integers

Relation on thc set )

s A——
——————————

——

1S lhc' hmlht’ nf
has the same parents as
is connected by a road 1o

is perpendicular to

for some integer £, equals
10X times



-

Draw graphs of cthe equivalence relations.
~ Solution:

(a) The set is people. The relation of the set “is the
brother of.” The relation (figure below) is not
equivalence relation because people considered
cannot be brothers to themselves. So, reflex-
ive property ts not satstied. But symmetry and

transitive propertics are satisfied.

ORC /@%)\
7N
(P= >(c)

The tigure illustrates that the relation 1s not an

cqui\'alcncc relation.



(b) The set is people. The relation 15 “has the/

= same parents as. In this case (figure below), all
the three properties are satisfied, hence it 1s an

equivalence relation.

OJNONENNO
/
© «{ \

Thus the relation is an equivalence relation.




=

. » . . “./
(c) The set is “points on a map.” The relation is "1s

connected by a road to.” This relation figure

is not an equivalence relation because
the transitive property is not satisfied. The road
may connect st point and 2nd point; 2nd point

'Hul ‘“l '"'“”.'Nl! L 11V 11Ot coOprnicet N -Hu| ',':‘

protnes. | s, Lransitive PrOPErty s nor s stinfredl

(b)) (B e "(.,»)

1 he figure tllustrates that the relation s not an
cQuivalence relation.



e
1T'he rela-

(d)

L]

' he sec is “lines 1in plane geomertry.
tion “is perpendicular to.” The relation (hgure
below) defined here is nor an equivalence relation
because borth reflexive and transitive properties
arce not satisfied. A line cannot be perpendicu-
lar to itself, hence reflexivity is not satisfied. Also
rransitivity property is not satisfied because 1st
line and 2nd line may be perpendicular to each
other, 2nd line and 3rd line may also be perpen-
dicular to each other, but 1st line and 3rd line
will not be perpendicular to each other. However,

symmetry property is satisfied.

The figure illustrates that the relation is not an
equivalence relation.




=S
(e) The setis “positive integers . The relation is “for

_ some integer k, equals 10% times.” In this case
(figure below), reflexivity is not satisfied because
a positive integer, for some integer k, equals 10
times is not possible. Symmetry and transitivity
properties are satisfied. Thus, the relation is not
an equivalence relation.



The figure illustrates that the relatig is ne

- t
equivalence relation. an



10. The following figure shows dhree relation. i
o

the universe X =—{a. . c}. Are these n

= = elat‘
equivalence relavons? long
o | \_\ l/ '.
- \ / ’/
O4 o
N

(m)
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Solutien:

@} The relation in (i) is not equivalence relanion
DeCause transitive Property 1s not satisfied.

b} The relation in (11) is not equivalence € relation

b"dlbf ransitve propem 1S NOt sanisfied.

4 Jatio?
o
Mm%e reﬂemxe smmetry and tmnsm\fP 4

SIUes are satished.
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Crisp Equivalence Relations

A relation R on'a universe X can also be thought of a relation from X to X. R

an equivalence relation if it has the followmg three properties (1) re"lexwlty (:
Symmetry and (3) Tran51t1v1ty

b Reﬂexwﬁy. (x5 x) e R or xR(xl, x) =1
2. Symmetry: © (xl,x) € R—)(x x) = R
: | e o) T
XR(X;, X)) = XR( X.) |
_(pr) e Rand(x xk) € R-) (x Xk) e R :
. (or) PIa
. XR (Xl’ X) and XR(X xk) "1
- ? XR(XI’ Xk) = e

3. Transitivity‘ :






Crisp Tolerance Relation =

Crisp tolerance relation |

~ A tolerance relation R (also called a proximity relation) on a universe X is @
relation that exhibits only the properties of reflexivity and symmetry. A tolerance
relation R can be reformed into an equivalence relation by (n - 1) compositions
with itself where n'is the cardinal number of the set.

Consider the following

0 0
l 0
R, =10 0
0 0

& T = &

S o —

0 1]

The above relation is reflexive and symmetric but not transitive

(X, X;) € R}, (x5, %,) € R, but (x,, %) € R,



N

—  For it to become an equivalence relation
11 0 0 O] [t 1 0 O O]
1 11 0 0 1 1 1 0 O
R10R1=01110001.11-O
O 01 1 O 0O 01 1 O
000 00 k] [O 00 O 1
1 1 1 0 0] X, R Xx, x4
i1 11 1 0| x5, R x; x5 x4
= 1 1 1 1 O X3 R Xl X2 x4
0 000 O 1

- i N -J: XS R XS

@cnce the above relation is symmetric, transitive and reflexive.



Flw&rance\&quW
 fugzyelaton R on ingeunverse X is arelation fom XtoX. Iisa fuzy

auivalence relafon if ll hree o the following propertiesfor matrx relation

s pR(xl xj) Mnd PR( = h
. WP 1k xwhcrckzlmm by
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Any fuzzy relation that has the properties of reflexivity and symmetry i
tolerance relation and can be transformed into a fuzzy equ1valence relation by

the most (n — 1) compositions.

. Co_n51der the fuzzy relation

04 1 050 03
R =[01 051 06 07
o 0 061 04
105 03 07 04 1

1 04 01 0 05]

uR(xl, X,) = O 4 uR[xz, x3] - 0:5.> 0 4

pR(xl, ;) = 0.1 - <min (0. 4, 0. S)

<04

hence the above relation is not transitive '



Sl o4 01000 05 10401707 05]
0T loAln O @s.ios. 04|04 050 -03f
) RoR = 011005 11 0.6 0.7 | o 181 +95 1 ; 06 0]

2 VOB OR g6 kL) B4 1o ol 06 1o 08
105 030704 1 | 0503 07 04 1]

—_

-

A1 4% 08 10,5004 057
104 10 0:5 05 04
0:5%.05 1106 07
0.4 05 06 1 - 06
105 04 07 06 1.

‘Hence the above relation is reflexive symmetric and trahsit_iV&



