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Membership functions

m Membership function defines the fuzziness in a
fuzzy set irrespective of the elements in the set,
which are discrete or continuous.

m They are generally represented in graphical form.

m The rules that describe fuzziness graphically are also
fuzzy.
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B The membership function defines all the information con-
tained in a fuzzy set.

B A fuzzy set A in the universe of discourse X can be defined
a set of ordered pairs:

A={(z,pa(z))z € X}
where, 1i(.) is called membership function of A.
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embership function on a discrete universe of course is trivial.
However, a membership function on a continuous universe of
discourse needs a special attention.

Following figures shows a typical examples of membership functions.
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B The core of a membership function for some fuzzy set A is
defined as that region of universe is characterized by com-
plete membership in the set A.ze,

pa(z) =1

B The core of a fuzzy set may be an empty set.
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Support

B The support of a membership function for a fuzzy set A

15 defined as that region of universe 1s characterized by a
nonzero membership in the set A.ze,

pa(z) >0
B A fuzzy set whose support 1s a single element in X with
pa(z) =1

1s referred to as a fuzzy singleton.



B The boundary of a membership function for a fuzzy set A is

defined as that region of universe containing elements that
have a nonzero but not complete membership.ze,

0 < pa(z) <1

B The boundary elements are those which possess partial
membership in the fuzzy set A.



m A fuzzy set whose membership function has at least one
element z in the universe whose membership value is unity
1s called normal fuzzy set.

m The element for which the membership is equal to 1 is called
prototypical element.
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Subnormal fuzzy set |

m A fuzzy set where in no membership function has its value
equal to I is called subnormal fuzzy set.
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onvex fuzzy set

m A conver fuzzy set has a membership function whose
membership values are strictly monotonically increasing or
strictly monotonically decreasing or strictly monotonically
increasing than strictly monotonically decreasing with in-
creasing values for elements in the universe.

m For elements z;, zp and z3 In a fuzzy set A. If,
pa(zz) > min(pa(z), pal(zs)]
then A is said to be convex fuzzy set.

m The intersection between two convex fuzzy sets is also a
convex fuzzy set.

m A fuzzy set possessing characteristics opposite to that of
convex fuzzy set is called non convexr fuzzy set.
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Crossover point of a fuzzy set

m The element in the universe for which a particular fuzzy set
A has 1ts value equal to 0.5 is called crossover point of a
membership function.ze,

palz) =0.5

m There can be more than one crossover point in a fuzzy set.
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Height of the fuzzy set

® The maximum value of the membership function in a fuzzy
set A 1s called as the height of the fuzzy set.

B For a normal fuzzy set, the height 1s equal to 1.

m [f the height of a fuzzy set is less than 1, then the fuzzy set
1s called subnormal fuzzy set.

m When the fuzzy set A 1s a convex single point normal fuzzy
set, then A is termed as a fuzzy number.
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Linguistic Variable

® A linguistic variable is
one with a value that is a
natural language
expression referring to
some quantity of interest.

® So the value of the
linguistic variable is a
word or a sentence. This
i1Is the main difference
between a  linguistic
variable and a numerical
one.

Linguistic variables and hedges

words or
sentences of a
natural language

‘ Numerica]\

numbers



inguistic variables and hedges

Linguistic Variable

d Generally, a linguistic variable is a composite term
u=ul, u2, ....,un which is a concatenation of atomic
terms ul, uz2, ...,un

d atomic terms can be divided into four categories:

0O , which are the labels of specified
fuzzy subsets of the universe of discourse (e.g. small
and big);

OConnectives: AND, OR and the negation NOT;

I hedges: such as VERY, MOST, RATHER,
SLIGHTLY, MORE OR LESS, etc.;

| such as parenthesis.



imary terms

A primary term is actually just a name or a label of a
fuzzy set. It usually describes the word which is
used by experts to express their opinion about the

value of one of the object characteristics, e.g : old,

slow medium Jfast
1
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Linguistic v
Ives

® The connectives (AND, OR, and NOT) realise the
operations of intersections, union, complement
considered earlier.
¢© Example :How can we express
® slow Oor medium ?

nd hedges

® nAaFoiiiiAarAl TGS
. slow  NOT fast  medium fast
0.9} \\ /
0.8+ ¥
\ / / O
0.7¢ \ / / slow
0.6} § OR
\ medium
0.5¢ \ / \
O ® 5
04 \ fa’r Y A NOT
0.3+ ¥ fast
0.2- AND
01l medium
0 e : — : >SS
0 5 10 15 20 257 77 730



inguistic variables and hedges

hedges( modifiers)

Hedges are used to produce a larger set of
values for a linguistic variable from a small
collection of primary terms through the
processes of intensification or concentration,
dilation and fuzzification.

For example, the operator
defined as a concentration opees

very u = u2

This operator can also be composed with
itself, thus:

very (very u) = (very u) 2 = u 4
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v gle—iiedn e ﬁe(example) The composite term ‘very old’ can
be o tamed from the term old as
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Linguistic variables and hedges

® Wind is a little strong.

® Weather is quite cold.

® Height is almost tall.

® Weight is very high.

® Wind, Weather, Height and Weight are
linguistic variables.

® A little, Quite, Almost, Very are hedges.

® Strong, Cold, Tall and high are linguistic
value.
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Example

Linguistic Linguistic ~Linguistic Linguistic
Variable Value Variable Value
i o ~ — e e
. P09 ; deayd
if temperatyte is cold and oil i§ cheap
i

then heatin’is high

Linguistic Linguistic
Variable Value



Definition [Zadeh 1973]

A linguistic variable is characterized by a quintuple

(x,T(x),U,G,M)
-

Term Set —

Universe

Syntactic Rule

Semantic Rule




Example

A linguistic variable is characterized by a quintuple

G(age) =

age
0ld, very old, not so old, |

more or less young,

| quite young, very young |

[0, 100]

(JX,T(x),U,G,M)

Example semantic rule:

M (old) 2{ (u, u_, ) |u S [0,100]]

0 uel0,50]

i |

u €[50,100]

Uy (U) = [ u- 50]_2
1+
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Example

® Membership of body fitness

Mathematical i , -
Hedge e Graphical Representation
Very very [m {x )]‘d'

More or less JHa(x)




B Fuzzfication 1s the process of transforming a crisp set to a

fuzzy set.

B This operation translates accurate crisp input values into
linguistic variables.

m They possess uncertainity within themselves.

B The variable 1s probably fuzzy and can be represented by a
membership function.



ernel of fuzzification

m For a fuzzy set,
A= {% z; € X}
B A common fuzzification algorithm is performed by keeping

1; constant and z; being transformed to a fuzzy set Q(z;)
depicting the expression about z;.

m The fuzzy set Q(z;) is referred to as the Kernel of fuzzifi-
cation or support fuzzification or s—fuzzification.

m The fuzzified set A can be expressed as,

p1Q(z1) + p2Q(z2) + . + pn Q(2n)
m Grade fuzzification or g—fuzzification: where z; 1s kept

constant and u; is expressed as a fuzzy set.



Methods of membershi

NN

Intuition
Inference
Rank ordering

Angular fuzzy
sets

Neural networks

Genetic
algorithm

Inductive
reasoning

value assignments



m /ntuition method is based upon the common
intelligence of humans.

m It is the capacity of the human to develop membership
func- tions on the basis of their own intelligence and
understanding capability.

m There should an in depth knowledge of the application
to which membership value assignment has to be
made.



Membership functions for the fuzzy variable
- weight.
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Jery
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Weight (kg)



(1) Using your own intuition and definitions of
the uni- verse of discourse, plot fuzzy
membership functions for "weight of people".



U = weight of people

Let the weights be in kilogram.
Let the linguistic variables be the following:

Very thin(VT) : W < 25
Thin(T) : 25 < W < 45
Average(AV) : 45 < W < 60
Stout(S) : 60 < W < 75
Very stout(VS) : W > 75
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(2) Using your own intuition and definitions of
the uni- verse of discourse, plot fuzzy
membership functions for "age of people".



U = age of people

Let A denote age of people in years.
Let the linguistic variables be the following:

Very young(VY) : A < 12
Young(Y) : 10 < A < 22
M:iddle age(M) : 20 < A < 42
Old(0O) : 40 < A < 72
Very old(VO) : 710 < A
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nerence

dThe inference method uses knowledge to
perform deductive reasoning.

HdDeduction achieves conclusion by means of
forward inference.

dThe knowledge of geometrical shapes and

geometry is used for defining membership
values.

dThe membership functions may be defined
using various shapes: trianqgular, trapezoidal,
bell shaped,Gaussian etc.

dThe inference method here is via trianaular



m Consider a triangle, where X, Y and Z are the angles, such
that

X>Y>Z2>0
Let U be the universe of triangles, e,
U={X,Y,Z2)X>Y>Z2>0,X+Y + Z =180}
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m There are varlous types of triangles available:

B [ = 1s0sceles triangle

E = equilateral triangle

El R = mght—angle triangle

B IR = 1sosceles and right—angle triangle
H T = other triangles



B e
__‘J"',fj"‘w

/

B The membership values of approximate isosceles triangle is

obtained using,

w(X,Y,2)=1- ﬁ?ﬂmn(x LY, Y- 2)

where,
X>Y>Z>0and X + Y + Z =180
fX=YorY =12, then
ui(X,Y,Z2)=1
If X =120° or Y = 60° and Z = 0°, then
ur(X,Y,Z)=0



m The membership value of approximate right angle triangle
s given by,
up(X,Y,Z)=1- —\X 90°)
[f X =907 then

”R(X: Y: Z) =1
[f X =180° then
”R(-X: Y:Z) -
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B The membership value of approximate 1sosceles right angle
triangle 1s obtained by,

IR=INR
and 1t 1s given by,
pir(X, Y, Z) = mn[p (X, Y, Z), MR(X Y,2)
=1- mm:[imm(x Y)Y -17) —\X 90°|]
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— ® The membership function for a fuzzy equilateral triangle is

given by,
1

X -2
Dﬂ

pe(X,Y,Z2)=1- 1
B The membership function of other triangles is given by,
T'=]IURUE
By using DeMorgan's law,
T=INRNE
The membership value can be obtained using,

:U'T('X: Y, Z) —
min|l - pr(X,Y,Z),1- pe(X,Y,Z),1 - pr(X,Y,Z)]
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Problem

(1) Using the inference approach, find the membership val-
ues for the trianqular shapes [ R, B[R and T for a triangle
with angles 45° 55° and 180°



Let the universe of discourse be,

U={(X,Y,Z)X=80°>Y=55>7=45>
0,X + Y+ 7 =280°+55°+45° = 180°}



Membership value of 1sosceles triangle, I

1
1
=1- —mzn(SUﬂ — 552,559 — 45°9)
T 1
= 1- ——min(25°,10°) = 1 - — x 10° = 0.833

Membership value of right angle triangle, R

1
pr=1- 55 |X —90°]
=1- —|80“ 90°|

1
:1—W:~.<10ﬂ:0.839



Membership value of equilateral triangle, E

1

1o X-Z
LE 1809( )
—1- 80° — 45°
= 1— — x 359 = (0.8056
180¢°

Membership value of 1sosceles and right angle triangle, IR

p1r = man(pr, 4R)
— min(0.833,0.889) = 0.833

Membership value of other triangles, T

pr =min(l - ur,1 - pg,1— pr)
— min(0.167,0.1944,0.111) = 0.111



Rank Orderinc

JOn the basis of the preferences made by an
individual, a committee, a poll and other
opinion methods.

HdPairwise comparisons enables to determine
preferences.
d This results in determining the order of the
membership.
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Eg
1. Formation of Government is based on polling
concept

2. To identify a best student, ranking may be
performed

3 To buy a car we can seek several opinion
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m Angular fuzzy sets are defined on a universe of angles, thus

repeating the shapes every 27 cycles.

m The truth values of the linguistic variable are represented
by angular fuzzy sets.

m The membership value corresponding to the linguistic term
can be obtained by,

Lr(0) =t- tan(0)
where £ 1s horizontal projection of radial vector.ze,

t = cos(0)



Model of angular fuzzy set

= «




—“Consider pH value of wastewater from a dyeing

industry.
PH = 7 - neutral; below 7 - Acid; 7-14 - Base
Linguistic variables are build in such a way that

neutral (N)- % = .11/2 rad

Base (B)

Very Base (VB)
Exact Base(EB)
Medium Base (MB)
Acid (A)

Very Acid (VA)
Exact Acid(EA)
Medium Acid (MA)



Neural"Networks
can also be used to obtai N
membership values

Fuzzy MFs are created for input dataset

I/p data set divided in to training and test
data

Data points are grouped in to clusters

If a data point belong to a cluster its MF is
1 in that cluster and O in other clusters

NN uses data point marked 1 for training

When a coordinate location of a point is
given, NN assigns a membership value to
that point

NN classifies the point into one of the
clhiictere which iec the no/n



Genetic_ Algorithims /

1 ora puricalar uncional mapping system, the sam membership fnctions and shapes are amel
Various fuzy vriables t be deine

L Thesechosen membersip unctions are then coded o bi trings.

3 Then these bt rings are concatenatd ot

4. The fitness function to be sed here is noed, I genetic alporthm, fi
imilar o tha layed by actvarion function i neural neork
3, The fness

nes Function plays 4 maor o

unction 1 sed to evaluae the imess ofeach e of membcrship functions;

0. These membersip uncrions define the funcrond mapping ofthe system,
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Induction Reasoning

Uses backward inference

Employs entropy minimization principle
Well defined database for i/p - o/p
relationship exists

Can be applied for complex systems where
data are abundant and static

Not suited for dynamic systems
There are 3 laws of induction
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. Gien a et of ieducle otcomes fan eperme, e duced ol are thos bl
consitent withall avalable formaton tat mavimize the oy ofthe s

1 Thenduced probablyof a e ofindependenosevatons s proorionl o the probail e
e induced probably o a single oseraton,

J, The induced ule is thar rue consstent with ll avalble nformarion of char minimizs he
ey
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. A tuzev threshold is to be established berween classes of data.

. Using entropy minimization screening method, first determine the threshold line.

. Then start the segmentation process.

. The segmentation process results into two classes.

. Again partitioning the first two classes one more time, we obtain three different classes.

. The partitioning is repeated with threshold value calculations, which lead us to partition the data set into
a number of classes or fuzzy sets.

7. Then on the basis of the shape, membership function is determined.
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dDefuzzification means the fuzzy to crisp conversion.

dThe fuzzy results can not be used in an application, where
decision has to be taken only on crisp values.

Example:
| T HicH then rotate ReipsT.

Here, may be input Ty IS fuzzy, but action rotate should be
based on the crisp value of Rgrst.
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A number of defuzzification methods are known. Such as

) Lambda-cut method
Weighted average method
Maxima methods

© Centroid methods



method _

L ambda-cut method is applicable to derive crisp value.

. Itﬂ can be applied to both fuzzy set and fuzzy relation

5]
Lambda-cut method for fuzzy set Lambda-cut method for fuzzy

relation

Lambda-cut method is alternatively termed as Alpha-cut method.
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© In this method a fuzzy set A is transformed into a crisp set A, for a
givenvalueof A (0 = A =1)

9 n other-words, A, = {X/us(x) = A}

O That Is, the value of Lambda-cut set A, 1S x , when the

membership value corresponding to x is greater than or equal to
the specified A.

© This Lambda-cut set A, is also called



Al G {(Xll 0'9)1 (XZI 0'5)1 (X3I 0'2)1 (X4I 0'3)}

Then Aos = {(X1, 1), (X2, 0), (X3, 0), (X4, 0)} = X1}

and
A2 = {(Xll 0'1)1 (XZI 05)1 (X3l 08)1 (X4, 0'7)}

Aoz = {(Xx1, 0), (X2, 1), (X3, 1), (X4, 1)} = {X2, X3, X4 }



LAUIIIVUU™CUL OCT Lo .

Two fuzzy sets P and Q are defined on x as follows.

w(x) | X4 | Xo | X3 | Xq4 | Xs
P |01](02|07|05]|04
Q [09|06]03|02)|0.8

Find the following : ( Home Work )
(@) Po.2, Qo

(b) (P U Q)os

(c) (P UP)s

(d) (P N Q)oa
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Lamdacutftora-Fuzzy=Relatie

The Lambda-cut method for a fuzzy set can also be extended to fuzzy
relation also.

Example: For a fuzzy relation R

"1 02 03
R= 105 09 06
0.4 08 07

We are to find A-cut relations for the following values of
A=0,0.2,0.9,0.5
(1 1 1 1
Rb=11 1 1land Rpo= {1 1 1| and

T 1 1] 1

1 0 0 1
Hﬂ_g =10 1 0] and H{]‘5 = {1
0 0 0 0




RUS) =RyUS,

B(RNS)h=RnNS

(R), # (R)) except when A = 0.5

A For any A < 8, where 0 < f < 1,1t 1s true that,Rg C R).
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f Rand S are two fuzzy relations, defined with the same fuzzy sets
over the same universe of discourses, then

Q (HUS),\zﬁ,\USA
6 (HOS)A:H,\HS,\
@ (R)\ # R\

Q For\< B, Where g between 0 and 1, then HF C R,

Lambda-cut method converts a fuzzy set (or a fuzzy
relation) into crisp set (or relation).



(1) Consider two fuzzy sets A and B, both defined on
X,qwen as follows:

pziX) - mm T T T
A 0.2 0.3 0.4 07 0.1
B 0.4 05 0.6 0.8 0.9

Ezxpress the following A\— sets using Zadeh's notation:

(a)(A)o (6)(B)o.2

(c)(AU B)os (d)(AN B)os
(e)(AU A)or (f)(B N B)os
(9)(AN B)os (h)(AU B)os



I The two fuzzy sets given are,

02 03 04 07 0.1
A={—+—+—+—+—}
04 05 06 08 09
B = {_ 4 Ty _}
L1 L2 I3 L4 s
6

(a)(A) = 1~ pae) = { >+ — +

— +
_ L2 I3 T4 Ig
(A)U-? — {mlm Z2, EE}

(b)(‘B)DE — {mlm I, I3, T4, $5}

()(AU B) = maz{ua(z), us(z)}

04 05 06 08 0.9
o m m m w
(AU B)os = {23, s, T5}




(d)(AN B) = min{pa(z), #B(E)}
0.2 0.3 04 07 0.

(e)(AU A) = maz{pa(z), pz(z)}
0.8 0.7 0.6 0.7 0.9
={— 4 —+—+—+—}
I o I3 Ia e
(AU A)o 7 = {z1, 22, T4, T5 }

(NEB) =1 pa(@) = {2+ —+ —+ =+ —}

o T Ta
(BNB) = min{us(z), p5(e)} = { o + 05 04702 0 =}

o I I3 I3 $4
(B a BJG-E — {mll L2, $3}




2 = 0-8 UlT 0|6 D|3 0-9
AHB :1— T = _-|-__|.__|___|_
(Q)ANB) =1 pansle) = {—~+ —+ -+ )

(AN B)og ={z1, 2, T3, Ts}

(R)(AU B) = maz{pz(z), p3(z)}
08 0.7 06 03 0.9

={—+—=+—=+—+—}
In 2 3 4 Is

(AUB)og = {2y, 25}



(2) Consider the discrete fuzzy set defined on the universe,
X ={a,b,c,d, e} as

09 06 03 0
A= { +?+—+?‘|‘ —}

Find the A—cut sets for A =1,0.9,0.6,0.3,07 and 0.



(b)}uzﬂ.g,ﬂn_g:{i_l_%_'_g 3 2}

(c)kzn.ﬁ,fiﬂﬁ:{§+%+% 3 2}

(d)}«:D.S,ADE:{; , ; : i : {15 2}

(M =07 Ao = {g + 3+ 5 5+ ¢)
1 1 1

(X =0, A0 = {~ - 242,



(3) Determine the crisp A— cut relation when A = 0.1,07,0.3
and 0.9 for the following relation R:

0 02 04 ]
R= 0.3 0.7 0.1
0.8 09 1.0 |
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Rg3 =

(d)A = 0.9

o o
o o
o O O

Rgg =



Lambda-cut method

Weighted average method
Maxima methods

Centroid methods



o Maxima Methods

) Height method

) First of maxima (FoM)

) Last of maxima (LoM)

) Mean of maxima(MoM)

@ Centroid methods Yy

) Center of gravity method (CoG)
© Center of sum method (CoS) ¥y

© Center of area method (CoA)

@ Weighted average method



dHeight method

JFirst of maxima (FoM)
UL ast of maxima (LoM)

dMean of maxima(MoM)
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method

IS method is based on Max-membership principle, and defined
as follows.

Uc (X*) = Uc(x) forallx € X

Note:
1. Here, x* Is the height of the output fuzzy set C.

2. This method is applicable when height is unique.
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FoM: First of Maxima : x* = min {x/C(x ) = max,, C {w } }

A




Illilud

—

LoM : Last of Maxima : x* = max {x/C(x ) = max,, C{w}}

A




L Ex.:EM(xf)

xX* =
|M|

where, M = {xj|u(x;) = h(C)} where h(C) is the height of the fuzzy set
C



Suppose, a fuzzy set Young is defined as follows:

Young = {(15,0.5), (20,0.8), (25,0.8), (30,0.5), (35,0.3) }

Then the crisp value of Young using MoM method is

X* = 20+25 _ 22 .5

Thus, a person of 22.5 years old is treated as young!



~What is the crisp value of the fuzzy set using MoM in the
following case?

Q) S e S e R e
(eon ——————————————

x
%

1|

Q
o

Note:
g Thus, MoM is also synonymous to middle of maxima.
o MoM is also general method of Height.



Centroid methods

dCenter of gravity method (CoG)
dCenter of sum method (CoS)
 Center of area method (CoA)
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© The basic principle in CoG method is to find the point x* where a
vertical line would slice the aggregate into two equal masses.

© Mathematically, the CoG can be expressed as follows :

« [ x.pe(x)dx

X = T hc(x)dx

© Graphically
: A

Center of gravity
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'@ x*is the x-coordinate of center of gravity.

Q | 1c(x)dx denotes the area of the region bounded by the curve
le.

Q If uc is defined with a discrete membership function, then CoG
can be stated as :

Sl Xipg(Xi) .

Xt =
ZL] elX;)

@ Here, x; is a sample element and n represents the number of
samples in fuzzy set C.
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calculation S /

__Steps:

e
@ Divide the entire region into a number of small regular regions
(e.q. triangles, trapizoid etc.)

¥ —

@ Let A; and x; denotes the area and c.g. of the i-th portion.

@ Then x* according to CoG is

X* — ZF=1 HJ'-(AJ'}
ZF=1 Aj
where nis the number of smaller aeometrical components.
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For Ay : y —0=9%’(x—0), or y = 0.35x

For Ao : y = 0.7

ForAz:y —0=4=3(x—2),0ory = x —2
For, Ay : y =1

For,As :y —1=2=k(x—4),0ory = —0.5x + 3



\\7

ition ( HW)

Thus, x* = I X#elX)o

T e(x)ax :%

N = f[;? 0.35x2dx + fz 70.7x2dx + fé’}(xz —2x)dx + j; xax +
[:2(—0.5x2 + 3x)dx

=10.98

D = [20.35xdx+ [F70.7xdx + [5(x —2)dx + [5 dx+ [ (—0.5x +3)dx
= 3.445

&l

Thus, x* = 1998 _ 3 187

't
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Note:

© In CoG method, the overlapping area is counted once, whereas,
In CoS , the overlapping is counted twice or so.

) In CoS, we use the center of area and hence, its name instead
of center of gravity as in CoG.



Example 2

Consider the three output fuzzy sets as shown in the following plots:

u

£ 10 +
! || |
Uat 051 J“r‘f'S 05 | ||
03 || |
D.EEH D.:E" D.EE“ || ||
/ \ |

—— e e

01 23456 012345678 012345678
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73 || |
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054 054 My sl | |
~ pa3 | |

=] 1 i |
0.25 \"-..\ 025 0.25 | II
— R S RS S
b1 2 3 4 5 8 0D 1 2 2 4 5 87 B 01 2 3 4 5 8 4
X X X

In this case, we have

Ac, = 1 % 0.3 % (3+5),x =25
A, =5 x05%x(4+2),x0="5
Ay, =5 x1x(3+1),x3=6.5

3 %0.3%(3+5)x2.5+3 x0.5x (4+2)x5+4 x1x(3+1)x6.5

« __ D
ThUS,X = %}{g_g}{{3+5j1_%;{{],ﬁx[4—|-2}-|—%}<1}r:{3—|—1]

Note:

= 5.00

The crisp value of C = Cy U Cy U C3 using CoG method can be found

to be calculated as x* =4.9



Centroid method: Certer of largest area _—

If the fuzzy setmgmns, then the center of gravity of the
~ subregion with the largest area can be used to calculate the
defuzzified value.

| ;c.cm{x}.x’dx .
| tem(X)dx

Here, Cp, is the region with largest area, x’ is the center of gravity of
Cm.
Graphically,

Mathematically, x* =




Weighted 3 _eM

© This method is also alternatively called "Sugeno defuzzification”
method.

@ The method can be used only for symmetrical output membership
functions.

Q The crisp value accroding to this method is
X* — D it ﬁ-[}’-(ﬁ?}-(ﬂ')
B Z?:I J“'GJ-(XJ}

where, Cy, Co, ...Cp are the output fuzzy sets and (x;) is the value
where middle of the fuzzy set C; is observed.




Weighted av method

Graphically




Summary

® CoG ® II-FG{I}dx

X

[ pe(x)ax

® CoA o+ — pe (X).x ax
] pem(X)aX




o Center of sums method: The defuzzified value
1§ given by

[5Y g (W

x =1

/ 3 e (W

x r=1]

x



® Weighted Average Method

. 2 Mc ()X
Y ue G

X
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