	SYSTEM SOFTWARE
	

	QUESTION BANK-
	ASSEMBLERS

	
	

	1) Why an Assembly Language is needed?
	

Programming in machine code, by supplying the computer with the numbers of the operations it must perform, can be quite a burden, because for every operation the corresponding number must be looked up or remembered. Looking up all numbers takes a lot of time, and mis-remembering a number may introduce computer bugs.
So Assembly Languages are evolved which contains mnemonic instructions corresponding to the Machine codes using which the program can be written easily.

Therefore a set of mnemonics was devised. Each number was represented by an alphabetic code. So instead of entering the number corresponding to addition to add two numbers one can enter "add".

Although mnemonics differ between different CPU designs some are common, for instance: "sub" (subtract), "div" (divide), "add" (add) and "mul" (multiply).

2)
What is an Assembler?

An assembler is a program that accepts an assembly language program as input and produces its machine language equivalent along with information for the loader (An Assembler translates a program written in an assembly language to it machine language equivalent)

3)
Explain the terms a)Label,b)Opcode,c)Operand,and d)Comment

(What is the format in which the assembly language program is written?).

Label field.
o The label is a symbolic name that represents the memory address of an executable statement or a variable.
Opcode/directive fields.
The opcode (e.g. operation code) specifies the symbolic name for a machine instruction.
o The directive specifies commands to the assembler about the way to assemble the program.
Operand field.
The operand specifies the data that is needed by a statement.
Comment field.
The comment provides clear explanation for a statement.

4)
What are the basic functions of an assembler?

Functions of a Basic Assembler

Convert mnemonic operation codes to their machine language equivalents
E.g. STL -> 14 (line 10)

Convert symbolic operands to their equivalent machine addresses
E.g. RETADR -> 1033 (line 10)

Build the machine instructions in the proper format
Convert the data constants to internal machine representations
E.g. EOF -> 454F46 (line 80)

Write the object program and the assembly listing
5)
What are assembler Directives?

Assembler directives are Pseudo-instructions that are not translated into machine instructions and they provide instructions to the assembler itself.

· The SIC assembler directives.
 o START
Specification of the name and start address of the program.
o END

Indication of the end of the program and optionally the address of the first executable instruction.
o BYTE
Declaration of character or string constants.
 o WORD
Declaration of integer constants.
o RESB
Declaration of character variables or arrays.
o RESW

Declaration of integer variables or arrays.
6) What are the functions of two pass assembler?
Functions of Two Pass Assembler

Pass 1 - define symbols (assign addresses)
o Assign addresses to all statements in the program

o Save the values assigned to all labels for use in Pass 2 o Process some assembler directives

Pass 2 - assemble instructions and generate object program Assemble instructions
o Generate data values defined by BYTE, WORD, etc. o Process the assembler directives not done in Pass 1
 o Write the object program and the assembly listing
[image: image1.png]—/\—

7) What is the format of the Object Program generated by the Assembler? Contains 3 types of records:
Header record: Col. 1 H

Col. 2-7 Program name

Col. 8-13 Starting address (hex)

Col. 14-19 Length of object program in bytes (hex)

Text record Col.1 T

Col.2-7 Starting address in this record (hex)

Col. 8-9 Length of object code in this record in bytes (hex) Col. 10-69 Object code (hex) (2 columns per byte)

End record Col.1 E

Col.2~7 Address of first executable instruction (hex) (END program_name)

8) Give an example of object program generated by an Assembler.

[image: image2.jpg]Object Program for Fig 2.2 (Fig 2.3)

HE0RY 091000 _—

i T,\ODIOOOAXQIk1033:8103&001036’331D3l3\30101SAﬁﬂlDSIEE100;'001025\06‘1039,\0010117
\'Iﬂﬂl(}ll,\l%UCl036,:&8206XAUBlﬂ33,\tc0000/\/¢54ﬂEADOODOSAOOOOOU
1'/\(702039,\JEA04L03DAUUlU30;020511,\30203[-‘/\1}8205]%25l030/\302057/\5119039/\202055\35203?‘
TAOOZOSNCAlﬂluJG’\‘COOD(}\FLAOGlUOD/sNlOJ(),KUlD79A30206%509019,PC2079/\221036
TO 3073!106Ab€0000l}i

EAGDlOOO

9)
What is forward reference?

Forward reference is a reference to a label that is defined later in the program.

Example

10 STL RETADR

o RETADR is not yet defined when we encounter STL instruction o So it is called forward reference

10) Give an example of Assembly language along with the objectcode generated.

	Line
	Loc
	Source statement
	
	Object code

	5
	1000
	COPY
	START
	1000
	

	10
	1000
	FIRST
	STL
	RETADR
	141033

	15
	1003
	CLOOP
	JSUB
	RDREC
	482039

	20
	1006
	
	LDA
	LENGTH
	001036

	25
	1009
	
	COMP
	ZERO
	281030

	30
	100C
	
	JEQ
	ENDFIL
	301015

	35
	100F
	
	JSUB
	WRREC
	482061

	40
	1012
	
	J
	CLOOP
	3C1003

	45
	1015
	ENDFIL
	LDA
	EOF
	00102A

	50
	1018
	
	STA
	BUFFER
	0C1039

	55
	101B
	
	LDA
	THREE
	00102D

	60
	101E
	
	STA
	LENGTH
	0C1036

	65
	1021
	
	JSUB
	WRREC
	482061

	70
	1024
	
	LDL
	RETADR
	081033

	75
	1027
	
	
	RSUB
	
	
	
	4C0000

	80
	102A
	EOF
	
	BYTE
	
	C’EOF’
	454F46

	85
	102D
	THREE
	WORD
	3
	
	000003

	90
	1030
	ZERO
	
	WORD
	0
	
	000000

	95
	1033
	RETADR
	RESW
	
	1
	
	

	100
	1036
	LENGTH
	RESW
	
	1
	
	

	105
	1039
	BUFFER
	RESB
	
	4096
	
	

	110
	
	.
	
	
	
	
	
	

	115
	
	.
	SUBROUTINE TO READ RECORD INTO BUFFER

	120
	
	.
	
	
	
	
	
	

	125
	2039
	RDREC
	LDX
	
	ZERO
	041030

	130
	203C
	
	
	LDA
	
	ZERO
	001030

	135
	203F
	RLOOP
	TD
	
	INPUT
	E0205D

	140
	2042
	
	
	JEQ
	
	RLOOP
	30203D

	145
	2045
	
	
	RD
	
	INPUT
	D8205D

	150
	2048
	
	
	COMP
	ZERO
	
	281030

	155
	204B
	
	
	JEQ
	
	EXIT
	
	302057

	160
	204E
	
	
	STCH
	
	BUFFER,X
	549039

	165
	2051
	
	
	TIX
	
	MAXLEN
	2C205E

	170
	2054
	
	
	JLT
	
	RLOOP
	38203F

	175
	2057
	EXIT
	
	STX
	
	LENGTH
	101036

	180
	205A
	
	
	RSUB
	
	
	4C0000

	185
	205D
	INPUT
	BYTE X’F1’
	F1
	
	

	190
	205E
	MAXLEN
	WORD
	4096
	001000
	

	195
	
	.
	
	
	
	
	
	

	200
	
	.
	SUBROUTINE TO WRITE RECORD FROM BUFFER

	205
	
	.
	
	
	
	
	
	

	210
	2061
	WRREC
	LDX
	ZERO 041030
	
	

	215
	2064
	WLOOP
	TD
	OUTPUT
	E02079

	220
	2067
	
	
	JEQ
	WLOOP
	302064
	

	225
	206A
	
	
	LDCH BUFFER,X
	509039
	

	230
	206D
	
	
	WD
	OUTPUT
	DC2079

	235
	2070
	
	
	TIX
	LENGTH
	2C1036

	240
	2073
	
	
	JLT
	WLOOP
	382064
	

	245
	2076
	
	
	RSUB
	
	
	4C0000

	250
	2079
	OUTPUT
	BYTE X’05’
	05
	
	

	255
	
	
	
	END FIRST
	
	

10)
Write an Algorithm for pass 1 of SIC Assembler.

[image: image3.jpg]Pass 1:

begin
Tomd f£irst input line
if OPCODE = ‘START' them
begin
Save #[OPERAND] as starting address
initialize LOCCTR to starting address
write line to intermediate £ile
Toad next input line
ona (if START)

begin
if thiz i= not a comment line then
begin
if thore is a symbol in the LABEL ficld them

egin
search SYMTAR for LABEL
if founa them
set error flag (duplicate symbol)
insert (LABEL,LOCCTR) into SYMTAB
ena (if mymbol)
search OPTAB for GPCODE
if founa them
ada 3 (inmstruction length) to LOCCTR

elsa if OPCODE - ‘WORD’ them
2aa 3 to rocoTR

elme if OPCODE — ‘RESW’ then
add 3~ #[OPERAND] to LOCCTR

elma if OPCODE = ‘RESE’ them

aad # [OPERAND] to LOCCTR
elma if OPCODE - “BYTE' them
begin
fina length of constant in bytes
ada lensth to LoCCTR .
enda (if BYTE)
elma
et error flag (invalid operation code)
ona (if not a commenc)
write line to intermediate file
read next imput line
ena (while not END}
write last line to intermediate file
save (LOCCTR - starting address) as program length

ena (Fass 1)

Figure 2.4(a) Algorithm for Pass 1 of assembler.

11) Write an algorithm for pass 2 of SIC assembler.

[image: image4.jpg]Pass 2:

begin
Fead firsc input line (from intermediate file)
i OPCODE = 'START’ them
begin
write listing line
read next input line
ena (if START) .
write Header record to'object program
Initialize first Text record
while OFCODE = ‘END’ do
begin
if this is not a comment line them
begin
search OPTAB for OPCODE
1 found then
begin

if there is a symbol in OPERAND field then
begin
Search SYMTAB for OPERAND
if found them
store symbol value as operand address
elee
begin
store 0 as operand address
set error flag (undefined symbol)
ena
ond (if-symbol)
olse

store 0 as operand address
assemble the object code instruction
end (if opcode found)
else if OFCODE = 'BYTE' or 'WORD' then
convert constant to cbject code
4f object code will mot fit into the current Text record then
begin
write Text record to object program
Initialize new Text record
ena
ada object code to Text record
ena (if not comment)
write listing line
read next input line
end (while noc END)
write last Text record to object program
write End record to object program
write last listing line
ena’ (pass 2)

Figure 2.4(b) Algorithm for Pass 2 of assembler.

12) What are the Data Structures used in an Assembler? Data Structures:

Operation Code Table (OPTAB) Symbol Table (SYMTAB) Location Counter(LOCCTR)

13) Explain the features of a Symbol Table.  SYMTAB (symbol table)
 Content

Label name and its value (address) May also include flag (type, length) etc.

 Usage

Pass 1: labels are entered into SYMTAB with their address (from LOCCTR) as they are encountered in the source program

Pass 2: symbols used as operands are looked up in SYMTAB to obtain the address to be inserted in the assembled instruction

 Characteristic

Dynamic table (insert, delete, search)

 Implementation

Hash table for efficiency of insertion and retrieval

[image: image5.jpg]Line Source statement

s copy. sTarr o CoPY FILE FROM INPUT TO OUTRUT
15 FrRsT Sto RETADR SAVE RETURN ADDRESS
is ELSSE S50m ROREC READ INBUT RECORD
25 Zoa ENGTH TEST FOR BOF (LENGTH = 0)
23 Some #5
33 SEo EnDEIL ExIT IF EOF FouND
38 = WRREC WRITE GUTEUT RECORD
2o 3 Srooe Toon,
as ENDETL Loa ~E¥Bor - TNSERT END OF FILE MARKER
55 Sza SoreER
33 on "3 sEr LEneTH - 3
= STa Lo
s 550 WRREC WRITE EOF
73 5 eRETADR RETURN 7O CALLER
2 Ose CBATA
55 rETADR RESwW T
100 Pty REouw 3 LENGTH OF RECORD
305 ose Sorxs
105 BoFFER rESS Goss 4096-BYTE BUEFER AREA
1de BOTEND Bou’ < FIRST LOCATION AFTER BUFFER
187 MRS BT BUFEND-BUFFER MANIMUM RECORD LENGTH
328 3 >
118 3 SUBROUTINE TO READ RECORD INTO BUFFER
120 5
133 use
13s roREC SrEan x cLEAR LoOP CoUNTER
i3c SrEAR A SEEAR A TO ZERO
132 SrEAR s SiEAR £ To ZERo
133 +EoT RN
135 rroow =S TnpoT TEST INPUT DEVICE
130 SEo Rroos LOOE ONTIL READY
1as RD. INpoT EEAD CHARACTER INTO REGISTER A
150 Somer ars TEST FOR FND OF RECORD (%' 60°)
235 Seo T EXIT LOOP IF EOR.
183 Srou BOFEER, % STORE CHARACTER IN BUFFER
1es TR = LOOP UNLESS MAX LENoTH
170 SEE Rroor HAS BEEN REACHED
175 Emcrm ST pr=sacey SAVE RECORD LENGTH
Ido Rson RETORN 1O CALLER
183 osE coaTa
185 NEUT BvTE g copE For INPUT DEVICE
153 5
200 E SUBROUTINE TO WRITE RECORD FROM BUFFER
Ere E:
22s s
270 wrREC SrEan x cLEAR LooP couNTER
212 Tor TencTH
213 wroor B 05" TEST ouTPUT DEVICE
230 5B wrooe LOOE UNTIL READY
335 Toon BOFFER, 3% SET CHARACTER FROM BUFFER
335 wo 705" WRITE CHARACTER
235 T T LO0E UNTIL ALL CHARACTERS
2310 Six Wroow HAVE BEEN WRITTEN
2as Rson RETORN TO CALLER
353 ose cpaTa
223 Lrore
235 ENp FrrsT

Figure 2.11 Example of a program with multiple program blocks.

[image: image6.jpg]Block name Block number = Address Length

(default) 0 0000 0066
CDATA 0066 000B
CBLKS 0071 1000

19—

[image: image7.jpg]Program toades

[image: image8.png]Line

Loc

200F
2012
2015
2018
2018
201E
2021
2024
2027
2028
202D
2030
2033
2036

Source statement

FIRST
cLoop

ENDFIL

STL RETADR
JSUB RDREC
LDA LENGTH
CoMP ZERO
gE) BNORIL
JISUB WRREC
J CLOOP
LDA EOF
STA BUFFER
LDA THREE
STA LENGTH
LDL RETADR
RSUB

Object code

454F46
000003

000000

141009
48203D
00100C
281006
302024
482062
302012
001000
0CLO0F
001003
oc1o0c
482062
081009
40000

[image: image9.png]o .
115 % SUBROUTINE TO READ RECORD INTO BUFFER

120

121 2039 INPUT BYTE X'F1 FL

122 203A MAXLEN WORD 4096 001000
124 :

125 203D RDREC LDX 2ZERQ 041006
130 2040 LDA 2ZERQ 001006
135 2043 RLOOP D INPUT E02039
140 2046 B0 RLOOP 302043
145 2049 RD INPUT D82039
150 204c coMP ZERO 281006
155 204F JEQ—EXIT. 302058
160 2052 SICH BUFFER,X 549008
165 2055 TIX MAXLEN 2203a
170 2058 Jur RLOOP 382043
175 2058 EXIT STX LENGTH 10100C

180 205E RSUB. 4C0000

[image: image10.png]L) .
200 § SUBROUTINE TO WRITE RECORD FROM BUFFER

205

206 2061 OUTPUT _BYTE _ X'05. 05

207

210 2062 WRREC LDX ZERO 041006
215 2065 WLOOP TD OUTPUT E02061
220 2068 JEQ WLOOP 302065
225 2068 LDCH BUFFER,X 50900F
230 2068 WD OUTPUT DC2061
235 2071 TIX LENGTH 2¢100C
240 2074 aur WLOOP 382065
245 2077 RSUB 4c0000

255 END FIRST

[image: image11.png]00030000 ATFcxx

g

AoReC [+)
T To0s
2ER0 | 1008
waaec ((» [201F
Eor w0
enoriL ((+ 210
RETADR | 7009
BUFFER | 1007
cloor |12
FRST__|200F

[image: image12.png]Memory
address
1000
1010

2000
2010
2020
2030
200
2080

(=

2al00830
10070010
o0F10010
3082039

024

xla
Ty

000

260

1006
550

Symbol_ Value

ROREC
THREE | 1000
zEn0 | 1006
waReo | | ot—a{z01r | o 2001
eor w0
EnorL | 2020
5
BuFFeR [100F
ctoor |z
2007
AXLEN | 2058
WUt |20
o [+[o—s[os]o
L0 | 2043

[image: image13.png]HCOPY 001000001074

1001000094 54F46000003000000

T002008151410094800000010062810063000004800003¢2012

1002016022024
7002024]0010009C100E0010030C100G4800000810094C0000F 1001000
100201302203D

10020301 E041006001006£02039302043D820392810063000005490052€2034382043
1002050022058

700205807,1010064€000005

7002018022062

7002031022062

70020621804 1006£0206130206550900EDC20612C100G3820654C0000

£00200F

[image: image14.jpg]HALFSZ

PREVBT

BUFEND

MAXLEN/2
BUFEND-BUFFER
BUFFER-1

4096

[image: image15.jpg]Forward Reference Example

1 HALFSZ EQU MAXLENZ

[one undefined symtjol in the defining expression

[

HALFSZ [81] MAXLENZ D

defini

MAXLEN | o—sfrarsz [0

undefined symbol [depending list

[image: image16.png]MAXLEN

HALFSZ |&1| MAXLEN/2

HALFSZ

BUFFER

[image: image17.png]BUFEND | * e[waxcen

HALFSZ |a1[MAXLEN/2 o

PREVET |a1]BUFFER-1]

MAXLEN |82| BUFEND-BUFFER | ot—{ HALFSZ

BUFFER | * —>{ MAXLEN PREVET

=

[image: image18.png]HALFSZ &1 MAXLEN/2

PREVBT (1033

MAXLEN m BUFEND-BUFFER

MAXLEN

HALFSZ

COPY
1000

FIRST
1000

CLOOP
1003

ENDFIL
1015

EOF
1024

THREE
102D

ZERO
1030

RETADR
1033

LENGTH
1036

BUFFER
1039

RDREC
2039

[image: image19.png]BUFEND

MAXLEN

BUFFER | 1034

SYMBOL TABLE(SYMTAB)

14) What is Location Counter? Location Counter
A variable used to help in assignment of addresses
Initialized to the beginning address specified in the START statement
Counted in bytes
15) What are the machine dependant fetures of a SIC/XE Assembler?

Machine-dependent features of assemblers

Features of the SIC/XE machine

Programming features.

a. # symbol.

i. Indication of the immediate addressing mode.

ii. Immediate addressing provides a faster access to an operand reference.

b. @ symbol.

i. Indication of the indirect addressing mode.

ii. Indirect addressing reduces the number of instructions.

c. + symbol.

i. Explicit selection of the format 4 instruction with a direct addressing mode.

ii. Format 4 is selected when the 12-bit displacement of format 3 is too small.

d. BASE directive.

i. Indication that the base register B holds a base address used in a base addressing.

ii. NOBASE directive disables the base register.

iii. LDB instruction loads the base register with a base address.

e. Register-to-register addressing.

i. Register addressing reduces the size of a machine instruction and speeds up a computation

Assembling features.

f. Multiprogramming.

i. Larger memory allows us to load many programs.

ii. The object code is relative to zero because the load address is variable.

iii. Program must be relocated when it is loaded in memory.

g. Register set mapping.

i. A separate register table can store the numeric values of the registers.

ii. The numeric values of the registers can be preloaded with the symbol table.

h. Relative (PC and base) addressing mode.

i. Operand value is subtracted from PC or base register value.

ii. PC relative addressing provides a displacement from –2048 to +2047.

iii. Base relative addressing provides a displacement from 0 to 4095.

16) What is Program Relocation?

Program relocation

Principles.
o The load address of an object program is unknown at assembly time if the
system implements the multiprogramming feature.

o The assembler generates addresses relative to zero in the object program. o At load time, relocation is performed by adding the load address to the
relative addresses.

o Operands of instructions that use direct addressing must be relocated, and the assembler provides the relocation information in the object program.

o Operands of instructions that use relative addressing do not need to be relocated.

o Relocation can be processed by the loader or by the CPU using relocation registers.

17) What are the advantages of program relocation?

The larger main memory of SIC/XE
o Several programs can be loaded and run at the same time. o This kind of sharing of the machine between programs o is called multiprogramming
To take full advantage
· Load programs into memory wherever there is room
· Not specifying a fixed address at assembly time
· Called program relocation
18) What are program blocks?

· Refer to segments of code that are rearranged within a single object program unit
· USE [blockname]
· At the beginning, statements are assumed to be part of the unnamed (default) block
· If no USE statements are included, the entire program belongs to this single block
· Each program block may actually contain several separate segments of the source program
19) How the program blocks are assembled? Program Blocks - Implementation

· Pass 1
· Each program block has a separate location counter
· Each label is assigned an address that is relative to the start of the block that contains it
· At the end of Pass 1, the latest value of the location counter for each block indicates the length of that block
· The assembler can then assign to each block a starting address in the object program
· Pass 2
· The address of each symbol can be computed by adding the assigned block starting address and the relative address of the symbol to that block

· Each source line is given a relative address assigned and a block number

20) What is one pass assembler? Explain the functioning of one-pass assembler.

 One-pass assemblers are used when

o it is necessary or desirable to avoid a second pass over the source program o the external storage for the intermediate file between two passes is slow or

is inconvenient to use

 Main problem: forward references to both data and instructions

 One simple way to eliminate this problem: require that all areas be defined before they are referenced.

o It is possible, although inconvenient, to do so for data items. o Forward jump to instruction items cannot be easily eliminated.

Sample Program for a One-Pass Assembler

Sample Program for a One-Pass Assembler

Load-and-Go Assembler

· Load-and-go assembler generates their object code in memory for immediate execution.

· No object program is written out, no loader is needed.

· It is useful in a system oriented toward program development and testing such that the efficiency of the assembly process is an important consideration.

· Load-and-go assembler

· Omits the operand address if the symbol has not yet been defined

· Enters this undefined symbol into SYMTAB and indicates that it is undefined

· Adds the address of this operand address to a list of forward references associated with the SYMTAB entry

· Scans the reference list and inserts the address when the definition for the symbol is encountered.

· Reports the error if there are still SYMTAB entries indicated undefined symbols at the end of the program

· Search SYMTAB for the symbol named in the END statement and jumps to this location to begin execution if there is no error

Object Code in Memory and SYMTAB

After scanning line 40

Object Code in Memory and SYMTAB

After scanning line 160

Object Program from One-Pass Assembler

21) What is a multi-pass assembler? Explain with an example,the functioning of

a multi-pass assembler.

Multi-Pass Assemblers

· Prohibiting forward references in symbol definition:

– This restriction is not a serious inconvenience.

– Forward references tend to create difficulty for a person reading the program.

· Allowing forward references

– To provide more flexibility

– Solution:

· A multi-pass assembler that can make as many passes as are needed to process the definitions of symbols.

· Only the portions of the program that involve forward references in symbol definition are saved for multi-pass reading.

· For a two pass assembler, forward references in symbol definition are not allowed:

ALPHA EQUBETA

BETA EQU DELTA DELTA RESW 1

· Reason: symbol definition must be completed in pass 1.

· Motivation for using a multi-pass assembler

– DELTA can be defined in pass 1

– BETA can be defined in pass 2

– ALPHA can be defined in pass 3

Implementation

· A symbol table is used

– to store symbol definitions that involve forward references

– to indicate which symbols are dependant on the values of others

– to facilitate symbol evaluation

· For a forward reference in symbol definition, we store in the SYMTAB:

– the symbol name

– the defining expression

– the number of undefined symbols in the defining expression

– the undefined symbol (marked with a flag *) associated with a list of symbols depend on this undefined symbol.

· When a symbol is defined, we can recursively evaluate the symbol expressions depending on the newly defined symbol.

Forward Reference Example

2
MAXLEN
EQU
BUFEND-BUFFER

undefined symbol

depending list

two undefined symbol in the defining expression

defining expression

	undefined symbol
	
	

	
	
	depending list

	
	
	

3
PREVBT
EQU
BUFFER-1

appended to the list

4
BUFFER
RESB
4096

5
BUFEND
EQU
*

