	
	SYSTEM SOFTWARE
	

	QUESTION BANK-
	
	MACRO PROCESSORS

	
	
	
	

1)
Define Macro.

· A macro instruction (macro) is a notational convenience for the programmer.
· It allows the programmer to write a shorthand version of a program
o A macro represents a commonly used group of statements in the source programming language.
o Expanding the macros - the macro processor replaces each macro instruction with the corresponding group of source language statements.
2) What is a macro processor?

A macro processor - Essentially involve the substitution of one group

of characters or lines for another. Normally, it performs no analysis of the text it handles. It doesn’t concern the meaning of the involved statements during macro expansion

o The design of a macro processor generally is machine independent.

Three examples of actual macro processors:

o A macro processor designed for use by assembler language programmers o Used with a high-level programming language
o General-purpose macro processor, which is not tied to any particular language

[image: image1.jpg]Source
Code
(with macro) |

Macro
Processor

Expanded

Code

Compiler

I /Assembler |

Object
program_

3) What are the basic macro processor functions? Basic Macro Processors Functions
Macro processor should processes the

Macro definitions

o Define macro name, group of instructions

Macro invocation (macro calls)

o A body is simply copied or substituted at the point of call Expansion with substitution of parameters

o Arguments are textually substituted for the parameters

o The resulting procedure body is textually substituted for the call

4) What are the Assembler directives used for Macro Definition? Macro Definition
Two new assembler directives are used in macro definition: MACRO: identify the beginning of a macro definition MEND: identify the end of a macro definition

o label op operands

name MACRO parameters

:

body

:

MEND

o Parameters: the entries in the operand field identify the parameters of the macro instruction

We require each parameter begins with ‘&’

o Body: the statements that will be generated as the expansion of the macro. o Prototype for the macro:

The macro name and parameters define a pattern or prototype for the macro instructions used by the programmer

5) Give an example program which uses Macro Definition.

Macro Definition

[image: image2.png]3,
10
15
20
25
3C
35
40
45
50
55
60
65
70
75
80
85
90
95

COPY
RDEUFF

START
MACRO

MACRO

CLEAR

CLEAR

CLEAR
+LDT

JEQ
COMFR
STCH
TIXR

JLT
STX

0

COPY FILE FROM INPUT TO OUTEUT

&INDEV, &BUFADR,, &RECLTH

TO READ RECORD INTO BUFFER

X
A
)
#4096
=X’ &INDEV'
b
=X'&INDEV'
A,S
*+11
&BUFADR, X
¥
*=19
&RECLTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

[image: image3.png]3,
10
15
20
25
3C
35
40
45
50
55
60
65
70
75
80
85
90
95

COPY
RDEUFF

START
MACRO

MACRO

CLEAR

CLEAR

CLEAR
+LDT

JEQ
COMFR
STCH
TIXR

JLT
STX

0

COPY FILE FROM INPUT TO OUTEUT

&INDEV, &BUFADR,, &RECLTH

TO READ RECORD INTO BUFFER

X
A
)
#4096
=X’ &INDEV'
b
=X'&INDEV'
A,S
*+11
&BUFADR, X
¥
*=19
&RECLTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

6) How Macro is invoked in a program? Give example.

Macro Invocation

[image: image4.png]165
170
175
18¢
190
195
200
205
210
215
220
225
230
235
240
245
250
255

FIRST
CLOOP

ENDFIL

EOF
THREE
RETADR
LENGTH
BUFFER

Figure 4.1

MAIN PROGRAM

STL RETADR SAVE RETURN ADDRESS
RDBUFF F1,BUFFER, LENGTH READ RECORD INTO BUFFER
LDA LENGTH TEST FOR END OF FILE

COMP #0

JEQ ENDFIL EXIT IF ECF, FOUND

WREUFF 05,BUFFER, LENGTH WRITE OU'ifPU’I‘ RECCRD

J CLOOP LOOP

WRBUFF 05, EOF, THREE INSERT EOF MARKER
J @RETADR

BYTE C*ECF’

WORD 3

RESW 1

RESW 4 LENGTH OF REZCCRD

RESBE 4096 40%6-BYTE BUFFER AREA
END FIRST

Use of macros in a SIC/XE program.

7)
What is Macro Expansion? Give an example.

Macro Expansion

Each macro invocation statement will be expanded into the statements that form the body of the macro.

o Arguments from the macro invocation are substituted for the parameters in the macro prototype.

The arguments and parameters are associated with one another according to their positions.

o The first argument in the macro invocation corresponds to the first parameter in the macro prototype, etc.

Macro Expansion Example

[image: image5.jpg]= | Expanded source program
=y et
defmiion 1
wo wacko ¢]
A LdTA Sta Data
st DAt
9 s pata
STA patat
s pata
StA pata
S8 pata

Program From Fig. 4.1 with Macros Expanded (fig. 4.2)(Cont.)

[image: image6.png]215
220
220a
220b
220¢
220d
220e
220f
2209
220n
225
230
235
240
245
230
255

.ENDFIL
ENDFIL

EOF
THREE
RETADR
LENGTH
BUFFER

Figure 4.2

WRBUFT'
CLEAR
LDT
LDCH

JEQ
WD
TIXR
JLT

BYTE
WCRD
RESW
RESW
RESB
END

CLOCP LOOP

05,EZ0F, THREE INSERT EOF MARKER

X CLEAR LOOP COUNTER

THREE

EOF , X GET CHARACTER FROM BUFFER
=X’05" TEST OUTPUT DEVICE

*-3 LOOP UNTIL READY
=X*05" WRITE CHARACTER

T LOOP UNTIL ALL CEARACTERS

*-14 HAVE BEEN WRITTEN
@RETADR

C"EQF’

3

i

1 LENGTH OF RECORD

4096 4096-BYTE BUFFER AREA

FIRST

Program from Fig. 4.1 with macros expanded.

8)Explain the functions of two pass macro processor.

Two-pass macro processor

o Two-pass macro processor
o Pass1: process all macro definitions
o Pass2: expand all macro invocation statements o Problem
 Does not allow nested macro definitions o Nested macro definitions

o The body of a macro contains definitions of other macros

 Because all macros would have to be defined during the

 first pass before any macro invocations were expanded o Solution

· One-pass macro processor
9) What is the characteristic of one pass macro processor?
One-pass macro processor

Every macro must be defined before it is called

One-pass processor can alternate between macrodefinition and macro expansion

Nested macro definitions are allowed

10) What are the data structures used by the macro processor?

 Data Structures

o MACRO DEFINITION TABLE (DEFTAB)

· Macro prototype
· States that make up the macro body
· Reference to parameters are converted to a positional notation. o MACRO NAME TABLE (NAMTAB)
· Role: an index to DEFTAB
· Pointers to the beginning and end of the definition in DEFTAB o MACRO ARGUMENT TABLE (ARGTAB)
· Used during the expansion
· Invocation  Arguments are stored in ARGTAB according to their position
[image: image7.png]NAMTAB DEFTAB

&INDEV, ABUFADR, &RECLTH

ARGTAB

3| LENGTH

11) Write an algorithm for the Macro processor and explain. Algorithm and Data Structure (4)

[image: image8.png]begin {macro processor}
EXPANDING := FALSE
while OPCODE # ’‘END’ do
begin
GETLINE
PROCESSLINE
end {while}
end {macro pProcessor}

procedure GETLINE
begin
if EXPANDING then
begin
get next line of macro definition from DEFTAB
substitute arguments from ARGTAB for positional notation
end {if}
else
read next line from input file
end {GETLINE}
procedure PROCESSLINE
begin
search NAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = ‘MACRO’ then
DEFINE
else write source line to expanded file
end {PROCESSLINE}

[image: image9.png]procedure EXPAND
begin
EXPANDING := TRUE
get first line of macro definition {prototype} from DEFTAB
set up arguments from macro invocation in ARGTAB
write macro invocation to expanded file as a comment
while not end of macro definition do
begin
GETLINE
PROCESSLINE
end {while}
EXPANDING := FALSE
end {EXPAND}
procedure DEFINE
begin
enter macro name into NAMTAB
enter macro prototype into DEFTAB
LEVEL := 1
while LEVEL > 0 do
begin
GETLINE
if this is not a comment line then

begin
substitute positional notation for parameters
enter line into DEFTAB
if OPCODE = 'MACRO’ then
LEVEL := LEVEL + 1
else if OPCODE = ‘MEND’ then
LEVEL := LEVEL - 1
end {if not comment}

end {while}
store in NAMTAB pointers to beginning and end of definition

end {DEFINE}

12) What is the difference between a Macro and a subroutine? Differences between Macro and Subroutine

· After macro processing, the expanded file can be used as input to the assembler.
· The statements generated from the macro expansions will be assembled exactly as though they had been written directly by the programmer.
· The differences between macro invocation and subroutine call
o The statements that form the body of the macro are generated each time a macro is expanded.
o Statements in a subroutine appear only once, regardless of how many times the subroutine is called.
13) What are the machine independent features of macro processors? Other Macro Features
 Concatenation of macro parameters  Generation of unique labels

 Conditional macro expansion  Keyword Macro Parameters

Concatenation of Macro Parameters

 Pre-concatenation

o LDA X&ID1  Post-concatenation

o LDA X&ID1  Example: Figure 4.6

Concatenation Example

[image: image10.png]oAUl W

&ID

X&ID—1
X&ID—2
X&ID—3
X&ID—S

BETA

Generation of Unique Labels

· Example
o
JEQ
*-3

o inconvenient, error-prone, difficult to read
· Example Figure 4.7

$LOOP
TD
=X’&INDEV’

o 1st call:
· $AALOOPTD=X’F1’
o 2nd call:
· $ABLOOPTD=X’F1’
[image: image11.jpg]RDBUFF

$LOOP

$EXIT

MACRO
CLEAR
CLEAR
CLEAR

+LDT
™

&INDEV, &BUFADR, &RECLTH

X

a

s

#4096
=X’ &INDEV
$LOOP
=X’ &INDEV*
A8

SEXIT
&BUFADR, X
T

$LOOP
&RECLTH

@

CLEAR LOOP COUNTER

SET MAXTMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

RDBUFF
F1, BUFFER, LENGTH

[image: image12.jpg]CLEAR
CLEAR
CLEAR
+LDT
$SAALOOP TD

COMPR

STCH
TIXR

$AAEXIT STX

#4096
=X'F1
$AALOOP
=X FL
A8
SRAEXIT
BUFFER, X

$AATQOP
LENGTH

)

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

