System Software
Question Bank

--

TEXT-EDITORS

These are the primary interface to the computer for all types of “Knowledge workers” as they compose,organize,study and manipulate computer-based information.

1)Give an overview of the editing process.

An interactive editor is a computer program that allows a user to create and revise a target document.

The term document includes objects such as computer programs,texts,equations,tables,diagrams,line arts and photographs-anything that one might find on a printed page.

Text editor is one in which the primary elements being edited are character strings of the target text.

The document editing process is an interactive user-computer dialogue designed to accomplish four taks :

1) Select the part of the target document to be viewed and manipulated

2) Determine how to format this view on-line and how to display it.

3) Specify and execute operations that modify the target document.

4) Update the view appropriately.

Traveling – Selection of the part of the document to be viewed and edited. It involves first traveling through the document to locate the area of interest such as “next screenful”,”bottom”,and “find pattern”

Traveling specifies where the area of interest is;

Filtering : The selection of what is to be viewed and manipulated is controlled by filtering.

Filtering extracts the relevant subset of the target document at the point of interest,such as next screenful of text or next statement.

Formatting : Formatting then determines how the result of filtering will be seen as a visible representation(the view) on a display screen or other device.

Editing : In the actual editing phase ,the target document is created or altered with a set of operations such as insert,delete,replace,move or copy.

Manuscript oriented editors operate on elements such as single characters,words,lines,sentences,and paragraphs;

Program-oriented editors operates on elements such as identifiers,key words and statements

2) Explain the User-Interface of an Editor.
The user of an interactive editor is presented with a conceptal model of the editing system. The model is an abstract framework on which the editor and the world on which the operations are based.

Some of the early line editors simulated the world of 80-character card image lines. The Screen-editors define a world in which a document is represented as a quarter-plane of text lines.unbounded both down and to the right. The user sees ,through a cutout ,only a rectangular subset of this planeon a multi line display terminal. The cutout can be move left or right ,and up or down ,to display other portions of the document.

The user interface is also concerned with the input devices,the output devices,and the interaction language of the system.

Input Devices : The input devices are used to enter elements of text being edited ,to enter commands,and to designate editable elements.

INPUT DEVICES are categorized as :

1)Text devices

2)Button devices

3)Locator devices

1)Text or string devices are typically typewriter like keyboards on which user presses and release keys ,sending unique code for each key. Virtually all computer key boards are of the QWERTY type.

2)Button or Choice devices generate an interrupt or set a system flag,usually causing an invocation of an associated application program. Also special function keys are also available on the key board.

3)Locator devices : They are two-dimensional analog-to-digital converters that position a cursor symbol on the screen by observing the user’s movement of the device. The most common such devices are the mouse and the tablet.

The Data Tablet is a flat ,rectangular,electromagnetically sensitive panel. Either the ballpoint pen like stylus or apuck,a small device similar toa mouse are moved over the surface. The tablet returns to a system program the co-ordinates of the position on the data tablet at which the stylus or puck is currently located. The program can then map these data-tablet coordinates to screen coordinates and move the cursor to the corresponding screen position.

.Text devices with arrow(Cursor) keys can be used to simulate locator devices. Each of these keys shows an arrow that points up,down,left,or right.Pressing an arrow key typically generates an appropriate character sequence ,the program interpretsw this sequence and moves the cursor in the direction of the arrow on the key pressed.

Voice-input Devices : ,which translate spoken words to their textual equivalents,may prove to be the text input devices of the future

OUTPUT DEVICES

The output devices let the user view the elements being edited and the result of the editing operations. The first output devices were teletypewriters and other character-printing terminals that generated output on paper. Next CRT(Cathode Ray Tube) technology which uses CRT screen essentially to simulate the hard-copy teletypewriter. Todays advanced CRT terminals use hardware assistance for such features as moving the cursor,inserting and deleting characters and lines,and scrolling lines and pages.

Interaction Language : The interaction language of the text editor is generally one of several common types.

1) The typing oriented or text command-oriented method
is the oldest of the major editing interfaces. The user communicate with the editor by typing text stringsboth for command names and and for operands. These strings are sent to the editor and are usually echoed to the output device.

Typed specification often requires the user to remember the exact form of all commands ,or at least their abbreviations.

He Help facility have to be used or manuals have to be refered. Time consuming for in-experienced users.

2) Function key interfaces :

Each command is associated with marked key on the key board Eg Insert key,Shift key,Control key

3)Menu oriented interfaces

A menu is a multiple choice set of text strings or icons which are graphical symbols that represent objects or operations . The user can perform actions by selecting items for the menus The editor prompts the user with a menu. One problem with menu oriented system can arise when there are many possible actions and several choices are required to complete an action. The display area of the menu is rather limited.
3) Explain the structure of an Editor.

The command Language Processor accepts input from the user’s input devices,and analyzes the tokens and syntactic structure of the commands. It functions much like the lexical and syntactic phases of a compiler. The command language processor may invoke the semantic routines directly. In a text editor,these semantic routines perform functions lsuch as editing and viewing.

The semantic routines involve travelling,editing,viewing,and display functions. Editing operations are always specified by the user.In editing a document,the start of the area to be edited is determined by thecurrent editing pointer maintained by the editing component ,which is the collection of

modules dealing with editing tasks. The current editing pointer can be set or reset explicitly by the user using travelling commands ,such as next paragraph and next screen,or implicitly as a side effect of the previous editing operation such as delete paragraph.

The traveling component of the editor actually performs the setting of the current editing and viewing pointers,and thus determines the point at which the viewing and /or editing filtering begins.

When the user issues an editing command,the editing component invokes the editing filter. This component filters the document to generate a new editing buffer based on the current editing ponter as well as on the editing filter parameters. These parameters,which are specified by both by the user and the system,provide information such as the range of the text that can be affected by an operation. Filtering may consist of the selection of contiguous characters beginning at the current point.

Similarly,in viewing a document ,the start of the area to be viewed is determined by the current viewing pointer. This pointer is maintained by the viewing component of the editor,which is a collection of modules responsible for determining the next view.

The current viewing pointer can be set or resetexplicitly by the user or implicitly by the systemas a result of previous editing operation.

When the display needs to be updated,the viewing component invokes the viewing filter. This componet filters the document to generate a new viewing buffer based on the current viewing pointer as well as on the viewing filter parameters.

In Line editors,the viewing buffer may contain the current line; in screen editors,this buffer may contain rectangular cut out of the quarter-plane of text. This viewing buffer is then passed to the display component of the editor,which produces a display by mapping the buffer to a rectangular subset of the screen,usually called a window.

The editing and viewing buffers,while independent,can be related in many ways. Ina simplest case ,they are identical:theuser edits the material directly on the screen.On the other hand ,the editing and viewing buffers may be completely disjoint.

EG The user of a certain editor might travel to line 75,and after viewing it,decide to

change all occurrences of “ugly duckling” to “swan” in lines 1 through 50 of the file by

using a change command such as

[1,50] c/ugly duckling/swan/

As apart of the editing command there is implicit travel to the first line of the file. Lines 1 through 50 are then filtered from the document to become the editing buffer.Successive substitutions take place in this editing buffer without correspoing updates of the view

Editors function in three basic types

of computing environments:

Time sharing

Stand-alone

Distributed

Each type of environment imposes some constraints on the design of an editor

[image: image1.jpg]Current editing pointer

Current viewing pointer

_Display

Simple relationship between editing and viewing buffers

Windows typically cover the entire screen or rectangular portion of it. Mapping viewing buffers to windows that cover only part of the screen is especially useful for editors on modern graphics based workstations. Such systems can support multiple windows, simultaneously showing different portions of the same file or portions of different file. This approach allows the user to perform interfile editing operations much more effectively than with a system only a single window.

The mapping of the viewing buffer to a window is accomplished by two components of the system. First, the viewing component formulates an ideal view often expressed in a device independent intermediate representations. This view may be a very simple one consisting of a windows worth of text arranged so that lines are not broken in the middle of words. At the other extreme, the idealised view may be a facsimile of a page of fully formatted and typeset text with equations, tables and figures. Second the display components takes these idealised view from the viewing component and maps it to a physical output device the most efficient manner possible.

The components of the editor deal with a user documents on two levels: in main memory and in the disk file system. Loading an entire document into main memory may be infeasible. However if only part of a document is loaded and if many user specified operations require a disk read by the editor to locate the affected portions, editing might be unacceptably slow. In some systems this problem is solved by the mapping the entire file into virtual memory and letting the operating system perform efficient demand paging .An alternative is to provide is the editor paging routines which read one or more logical portions of a document into memory as needed. Such portions are often termed pages, although there is usually no relationship between these pages and the hard copy document pages or virtual memory pages. These pages remain resident in main memory until a user operation requires that another portion of the document be loaded. Editors function in three basic types of computing environment: time-sharing, stand-alone and distributed. Each type of environment imposes some constraint on the design of an editor. The time sharing editor must function swiftly within the context of the load on the computer痴 processor, central memory and I/O devices. The editor on a stand-alone system must have access to the functions that the time sharing editors obtain from its host operating system. This may be provided in pare by a small local operating system or they may be built into the editor itself if the stand alone system is dedicated to editing. The editor operating in a distributed resource sharing local network must, like a stand alone editor, run independently on each user痴 machine and must, like a time sharing editor, content for shared resources such as files.

5)
What is a debugger?

A debugger is a computer program that is used to test and debug other programs. When the program crashes, the debugger shows the position in the original code if it is a source-level debugger or symbolic debugger, commonly seen in integrated development environments(IDEs)

· Typically, debuggers also offer more sophisticated functions such as running a program in the following manner
· step by step (single-stepping)
· stopping (breaking) (pausing the program to examine the current state) at some kind of event by means of breakpoint, and tracking the values of some variables.

· Some debuggers have the ability to modify the state of the program while it is running, rather than merely to observe it.
6)
What are interactive debug systems?

An interactive debugging system provides programmers with facilities that aid in testing and debugging of programs interactively

Debugging Functions and Capabilities

One important requirement of any IDS is the observation and control of the flow of program execution

Setting break points – execution is suspended, use debugging commands to analyze the progress of the program, résumé execution of the program

Setting some conditional expressions, evaluated during the debugging session, program execution is suspended, when conditions are met, analysis is made, later execution is resumed

A Debugging system should also provide functions such as tracing and traceback

Tracing can be used to track the flow of execution logic and data modifications The control flow can be traced at different levels of detail – procedure, branch, individual instruction, and so on…

Traceback can show the path by which the current statement in the program was reached. It can also show which statements have modified a given variable or parameter.The statements are displayed rather than as hexadecimal displacements

How functions are provided To provide these functions, a debugger should consider the language in which the program being debugged is written

A single debugger – many programming languages – language independent

The debugger - a specific programming language – language dependent

The debugger must be sensitive to the specific language being debugged

The context being used has many different effects on the debugging interaction The statements are different depending on the language Cobol - MOVE 6.5 TO X

Fortran -
X = 6.5

C
-
X=6.5

Examples of assignment statements

What about optimized code ?

It is also important that a debugging system be able to deal with optimized code Many optimizations like - invariant expressions can be

removed from loops

- separate loops can be combined into a single loop

- redundant expression may be eliminated

- elimination of unnecessary branch instructions

Leads to rearrangement of segments of code in the program

All these optimizations create problems for the debugger, and should be handled carefully

Relationship with Other Parts of the System

The important requirement for an interactive debugger is that it always be available

Must appear as part of the run-time environment and an integral part of the system

When an error is discovered, immediate debugging must be possible

The debugger must communicate and cooperate with other operating system components such as interactive subsystems

Debugging is more important at production time than it is at application-development time

When an application fails during a production run, work dependent on that application stops

The debugger must also exist in a way that is consistent with the security and integrity components of the system

The debugger must coordinate its activities with those of existing and future language compilers and interpreters
