
Jisy Raju
Assistant Professor, CE Cherthala

Module 5

Transactional concurrency control:- Transactions, Nested Transactions-Locks-Optimistic
concurrency control

5.1 TRANSACTIONS

A transaction is a single logical unit of work which accesses and possibly modifies the contents of a

database. Transactions access data using read and write operations.
Let’s take an example of a simple transaction. Suppose a bank employee transfers Rs 500 from A's account
to B's account. This very simple and small transaction involves several low-level tasks.

A’s Account
Open_Account(A)
Old_Balance = A.balance
New_Balance = Old_Balance - 500
A.balance = New_Balance
Close_Account(A)

B’s Account
Open_Account(B)
Old_Balance = B.balance
New_Balance = Old_Balance + 500
B.balance = New_Balance
Close_Account(B)

In order to maintain consistency in a database, before and after transaction, certain properties are followed.
These are called ACID properties.

● Atomicity:
By this, we mean that either the entire transaction takes place at once or doesn’t happen at
all. There is no midway i.e. transactions do not occur partially. Each transaction is considered
as one unit and either runs to completion or is not executed at all. It involves following two
operations. Atomicity is also known as the ‘All or nothing rule’.
—Abort: If a transaction aborts, changes made to database are not visible.
—Commit: If a transaction commits, changes made are visible.

Consider the following transaction T consisting of T1 and T2: Transfer of 100 from account X
to account Y.

If the transaction fails after completion of T1 but before completion of T2.(say, after write(X) but before
write(Y)), then amount has been deducted from X but not added to Y. This results in an inconsistent
database state. Therefore, the transaction must be executed in entirety in order to ensure correctness of
database state.

● Consistency:

This means that integrity constraints must be maintained so that the database is consistent
before and after the transaction. It refers to correctness of a database. Referring to the example
above,
The total amount before and after the transaction must be maintained.
Total before T occurs = 500 + 200 = 700.
Total after T occurs = 400 + 300 = 700.
Therefore, database is consistent. Inconsistency occurs in case T1 completes but T2 fails. As a
result T is incomplete.

● Isolation:

This property ensures that multiple transactions can occur concurrently without leading to
inconsistency of database state. Transactions occur independently without interference. Changes
occurring in a particular transaction will not be visible to any other transaction until that particular

change in that transaction is written to memory or has been committed. This property
ensures that the execution of transactions concurrently will result in a state that is equivalent to a
state achieved these were executed serially in some order.

● Durability:
This property ensures that once the transaction has completed execution, the updates and
modifications to the database are stored in and written to disk and they persist even is system
failure occurs. These updates now become permanent and are stored in a non-volatile memory.
The effects of the transaction, thus, are never lost

Transaction sequence must continue until:

● COMMIT statement is reached

● ROLLBACK statement is reached

● End of program is reached

● Program is abnormally terminated

SQL statements that provide transaction support,

● COMMIT

● ROLLBACK

Transaction capabilities can be added to servers of recoverable objects. Each transaction is created and
managed by a coordinator.

Service actions related to process crashes • If a server process crashes unexpectedly, it is eventually

replaced. The new server process aborts any uncommitted transactions and uses a recovery procedure to
restore the values of the objects to the values produced by the most recently committed transaction. To deal
with a client that crashes unexpectedly during a transaction, servers can give each transaction an expiry
time and abort any transaction that has not completed before its expiry time.

Client actions related to server process crashes • If a server crashes while a transaction is in progress,
the client will become aware of this when one of the operations returns an exception after a timeout. If a
server crashes and is then replaced during the progress of a transaction, the transaction will no longer be
valid and the client must be informed via an exception to the next operation. In either case, the client must
then formulate a plan, possibly in consultation with the human user, for the completion or abandonment of
the task of which the transaction was a part.

5.2 Concurrency control

Concurrency controlling techniques ensure that multiple transactions are executed simultaneously while
maintaining the ACID properties of the transactions and serializability in the schedules. Serializability is a
concept that helps to identify which non-serial schedules are correct and will maintain the consistency of
the database.The various approaches for concurrency control,

● Lock based concurrency control
● Timestamp concurrency control
● Optimistic concurrency control

Simultaneous execution of transactions over a shared database can create several data integrity and
consistency problems.

● Lost Update:

● Dirty Read Problems

● Inconsistent Retrievals

Lost Update: This problem occurs when two transactions that access the same database items, have their

operations in a way that makes the value of some database item incorrect.

In other words, if transactions T1 and T2 both read a record and then update it, the effects of the first

update will be overwritten by the second update.

Example:

Consider the situation given in figure that shows operations performed by two transaactions, Transaction-

A and Transaction- B with respect to time.

At time t1 , Transactions-A reads value of X.

At time t2 , Transactions-B reads value of X.

At time t3,Transactions-A writes value of X on the basis of the value seen at time t1.

At time t4,Transactions-B writes value of X on the basis of the value seen at time t2.

So,update of Transactions-A is lost at time t4,because Transactions-B overwrites it without looking at its

current value.

Such type of problem is referred as the Update Lost Problem, as update made by one transaction is lost

here

Dirty Read Problems: This problem occurs when one transaction reads changes the value while the other

reads the value before committing or rolling back by the first transaction.

Example:

Consider the situation given in figure :

At time t1 , Transactions-B writes value of X.

At time t2 , Transactions-A reads value of X.

At time t3 , Transactions-B rollbacks.So,it changes the value of X back to that of prior to t1.

So,Transaction-A now has value which has never become part of the stable database.

Such type of problem is referred to as the Dirty Read Problem, as one transaction reads a dirty value which

has not been committed.

Inconsistent Retrievals: occurs when a transaction calculates some summary (aggregate) function over a

set of data while other transactions are updating the data.

example: let x=10, y=20, z=20

Serializability: Serializability is a concept that helps to identify which non-serial schedules are correct and

will maintain the consistency of the database(Interleaved execution of transactions yields the same results

as the serial execution of the transactions.)

Conflicting operations: Two operations are called as conflicting operations if all the following conditions

hold true for them-

● Both the operations belong to different transactions

● Both the operations are on same data item

● Read – Read (No conflict)

● Read – Write (or Write – Read)Conflict!

● Write – Write (Conflict)

Example-

Consider the following schedule-

In this schedule, W1 (A) and R2 (A) are called as conflicting operations because all the above conditions

hold true for them.

5.2.1 Recoverability from aborts

Servers must record all the effects of committed transactions and none of the effects of aborted

transactions.

This section illustrates two problems associated with aborting transactions,

● dirty reads

● premature

Dirty reads • The isolation property of transactions requires that transactions do not see the uncommitted

state of other transactions. The ‘dirty read’ problem is caused by the interaction between a read operation in

one transaction and an earlier write operation in another transaction on the same object

T2 sees result update by T1 on account A

T2 performs its own update on A & then commits.

T1 aborts -> T2 has seen a “transient” value

T2 is not recoverable

The failure of one transaction causes several other dependent transactions to rollback or abort, then such a

schedule is known as a cascading schedule or cascading rollback or cascading abort.

Premature writes:
Assume server implements abort by maintaining the “before” image of all update operations
T1 & T2 both updates account A
T1 completes its work before T2
If T1 commits & T2 aborts, the balance of A is correct
If T1 aborts & T2 commits, the “before” image that is restored corresponds to the balance of A before T2

For recoverability:
A commit is delayed until after the commitment of any other transaction whose state has been observed
(Tx’s should be delayed until earlier Tx’s that update the Same objects have been either committed or
aborted.)

5.3 NESTED TRANSACTIONS

The nested transaction is a transaction that is created inside another transaction. A nested
transaction is used to provide a transactional guarantee for a subset of operations performed within the
scope of a larger transaction. Doing this allows you to commit and abort the subset of operations
independently of the larger transaction.

Nested transactions have the following main advantages:
1. Subtransactions at one level (and their descendants) may run concurrently with other subtransactions at
the same level in the hierarchy.
2. Subtransactions can commit or abort independently.

The rules to the usage of a nested transaction are as follows:

● While the nested (child) transaction is active, the parent transaction may not perform any operations
other than to commit or abort, or to create more child transactions.

● Committing a nested transaction has no effect on the state of the parent transaction. The parent
transaction is still uncommitted.

● Likewise, aborting the nested transaction has no effect on the state of the parent transaction.

● If the parent aborts, then the child transactions abort as well. If the parent commits, then whatever
modifications have been performed by the child transactions are also committed.

5.4 LOCKS

Database systems equipped with lock-based protocols use a mechanism by which any transaction

cannot read or write data until it acquires an appropriate lock on it. Locks are of two kinds ,

● Binary Locks − A lock on a data item can be in two states; it is either locked or unlocked.

● Shared/exclusive − If a lock is acquired on a data item to perform a write operation, it is an
exclusive lock. Allowing more than one transaction to write on the same data item would
lead the database into an inconsistent state. Read locks are shared because no data
value is being changed.

Types of lock protocols,

● Single phase locking
● Two phase locking- 2PL
● Strict two phase locking

Single phase : lock-based protocols allow transactions to obtain a lock on every object before a operation
is performed. Transactions may unlock the data item after completing the operation.

Two phase: This locking protocol divides the execution phase of a transaction into three parts. In the first
part, when the transaction starts executing, it seeks permission for the locks it requires. The second part is
where the transaction acquires all the locks (Growing phase). Third phase starts, the transaction cannot
demand any new locks; it only releases the acquired locks (Shrinking phase).

Strict Two-Phase Locking: The first phase of Strict-2PL is same as 2PL. After acquiring all the locks in
the first phase, the transaction continues to execute normally. But in contrast to 2PL, Strict-2PL does not
release a lock after using it. Strict-2PL holds all the locks until the commit point and releases all the locks
at a time.

 Use of locks in strict two-phase locking
1. When an operation accesses an object within a transaction:
(a)If the object is not already locked, it is locked and the operation proceeds.
(b)If the object has a conflicting lock set by another transaction, the transaction
must wait until it is unlocked.
(c)If the object has a non-conflicting lock set by another transaction, the lock is
shared and the operation proceeds.
2. When a transaction is committed or aborted, the server unlocks all objects it
locked for the transaction

5.4.1 Lock implementation

The granting of locks will be implemented by a separate object in the server that we call the lock
manager. The lock manager holds a set of locks. The methods of Lock are synchronized so that the threads
attempting to acquire or release a lock will not interfere with one another. But, in addition, attempts to
acquire
the lock use the wait method whenever they have to wait for another thread to release it.

All requests to set locks and to release them on behalf of transactions are sent to an instance of
LockManager:

• The setLock method’s arguments specify the object that the given transaction wants to lock and
the type of lock.
• The unLock method’s argument specifies the transaction that is releasing its locks.

5.4.2 Locking rules for nested transactions

The aim of a locking scheme for nested transactions is to serialize access to objects so that,

● Each set of nested transactions is a single entity that must be prevented from observing the partial
effects of any other set of nested transactions.

● Each transaction within a set of nested transactions must be prevented from observing the partial
effects of the other transactions in the set.

The first rule is enforced by arranging that every lock that is acquired by a successful

subtransaction is inherited by its parent when it completes. Inherited locks are also inherited by ancestors.
The top-level transaction eventually inherits all of the locks that were acquired by successful
subtransactions at any depth in a nested transaction.

The second rule is enforced as follows:
• Parent transactions are not allowed to run concurrently with their child transactions. This means that the
child transaction temporarily acquires the lock from its parent for its duration.
• Subtransactions at the same level are allowed to run concurrently.

The following rules describe lock acquisition and release:
• For a subtransaction to acquire a read lock on an object, no other active transaction
can have a write lock on that object.
• For a subtransaction to acquire a write lock on an object, no other active transaction can have a read or
write lock on that object.
• When a subtransaction commits, its locks are inherited by its parent
• When a subtransaction aborts, its locks are discarded.

5.4.3 Deadlocks

Deadlock is a state in which each member of a group of transactions is waiting for some other
member to release a lock.The disadvantage of Locking Deadlocks. For an example, two transaction T & U
with two object A & B. T locks A and waits for U to release the locks on B. Other hand U locks B and
waits for T to release the locks on A -> Deadlock happens.
Four necessary conditions of deadlock are,

● Mutual Exclusion
● Hold and waits
● Non preemption
● circular waits

Strategies to Fight Deadlock

Deadlock Prevention: Violate one of the necessary conditions for deadlock.
Deadlock Avoidance: Have transactions declare max resources they will request, but allow them to lock at
any time (Banker’s algorithm)
Deadlock detection • Deadlocks may be detected by finding cycles in the wait-for graph. Having detected
a deadlock, a transaction must be selected for abortion to break the cycle.

Timeouts • Lock timeouts are a method for resolution of deadlocks that is commonly used. Each lock is
given a limited period in which it is invulnerable. After this time, a lock becomes vulnerable. However, if
any other transaction is waiting to access the object protected by a vulnerable lock, the lock is broken (that
is, the object is unlocked) and the waiting transaction resumes.

5.5 OPTIMISTIC CONCURRENCY CONTROL

Concurrency control is a concept that is used to address conflicts with the simultaneous accessing
or altering of data that can occur with a multi-user system. Optimistic concurrency control (OCC) is a
concurrency control method applied to transactional systems. OCC assumes that multiple transactions can
frequently complete without interfering with each other. Each transaction has the following phases:

● Working Phase
● Validation Phase
● Update Phase

Working Phase: A transaction fetches data items to memory and performs operations upon them.
Validation Phase: When the closeTransaction request is received, the transaction is validated to establish
whether or not its operations on objects conflict with operations of other transactions on the same objects.

Update Phase: If a transaction is validated, all of the changes recorded in its tentative versions are made
permanent.

Validation uses the read-write conflict rules to ensure that the scheduling of a particular transaction
is serially equivalent with respect to all other overlapping transactions – that is, any transactions that had
not yet committed at the time this transaction started. To assist in performing validation, each transaction is
assigned
a transaction number when it enters the validation phase. If the transaction is validated and completes
successfully, it retains this number; if it fails the validation checks and is aborted. The validation rules are,

Two types of Validation,

● Backward Validation
● Forward Validation

Backward Validation: In backward validation, the read set of the transaction being validated is compared
with the write sets of other transactions that have already committed. Therefore, the only way to resolve
any conflicts is to abort the transaction that is undergoing validation. In backward validation, transactions
that have no read operations (only write operations) need not be checked.

Forward Validation: In forward validation of the transaction Tv, the write set of Tv is compared with the
read sets of all overlapping active tractions- those that are still in their working phase (rule 1). Rule 2 is
automatically fulfilled because that active transactions do not write until after Tv has completed.

5.5.1 Comparison of forward and backward validation

conflicts-

● Forward validation allows flexibility in the resolution of conflicts. (Two methods -Defer the
validation until a later time when the conflicting transactions have finished or Abort the
transaction being validated).

● Backward validation allows only one choice – to abort the transaction being validated
Read Set- The read sets of transactions are much larger than the write sets.,

● Backward validation compares a possibly large read set against the old write set and it has a
overhead of storing old write sets.

● Forward validation checks a small write set against the read sets of active transactions and it
has to allow for new transactions starting during the validation process.

Jisy Raju

