
 
Module 6 
Concurrency:- Threads, Synchronization. Run-time program Management:- Virtual Machines,        
Late Binding of Machine Code, Reflection, Symbolic Debugging, Performance Analysis. 
 
Concurrency 
A program is said to be concurrent if it may have more than one active execution context—more                 
than one “thread of control.” 
Three important motivations: 
1. To capture the logical structure of a problem 
2. To exploit extra processors, for speed 
3.To cope with separate physical devices 
 
We use the word concurrent to characterize any system in which two or more tasks may be                 
underway at the same time. 
A concurrent system is parallel if more than one task can be physically active at once; this requires 
more than one processor. 
Concurrent Programming  
The term thread refers to the active entity that the programmer thinks of as running concurrently                
with other threads. 
In most systems, the threads of a given program are implemented on top of one or more                 
processes provided by the operating system.  
OS designers often distinguish between a heavyweight process, which has its own address space,              
and a collection of lightweight processes, which may share an address space. 
Task to refer to a well-defined unit of work that must be performed by some thread. 
Several languages call their threads processes.  
Ada calls them tasks. 
Synchronization 
In any concurrent programming model, two of the most crucial issues to be addressed are               
communication and synchronization.  
Communication refers to any mechanism that allows one thread to obtain information produced             
by another. 
Communication mechanisms for imperative programs are generally based on either shared           
memory or message passing.  
In a shared-memory programming model, some or all of a program’s variables are accessible to               
multiple threads. 
In a message-passing programming model, threads have no common state.  
For a pair of threads to communicate, one of them must perform an explicit send operation to                 
transmit data to another. 
Synchronization refers to any mechanism that allows the programmer to control the relative order              
in which operations occur in different threads.  
Synchronization is generally implicit in message-passing models: a message must be sent before it 
can be received. 
In both shared-memory and message-based programs, synchronization can be implemented either           
by spinning (also called busy-waiting) or by blocking. 
In busy-wait synchronization, a thread runs a loop in which it keeps reevaluating some condition                

until that condition becomes true. 
In blocking synchronization -also called scheduler-based synchronization, the waiting thread          
voluntarily relinquishes its processor to some other thread. 
OpenMP comprises a set of pragmas (compiler directives) to create and synchronize threads, and              
to schedule work among them. 



Threads 
Thread Creation Syntax 
Every concurrent system allows threads to be created dynamically.  
There are six principal options: co-begin, parallel loops, launch-at-elaboration, fork (with optional            
join), implicit receipt, and early reply.  
The first two options delimit threads with special control-flow constructs.  
The others use syntax resembling subroutines. 
Most libraries use fork/join, as do Java and C#.  
Ada uses both launch-at-elaboration and fork. 
OpenMP uses co-begin and parallel loops. 
A co-begin construct calls instead for concurrent execution: 
co-begin – – all n statements run concurrently 
stmt 1 
stmt 2 
. . . 
stmt n 
end 
The compiler checks to make sure that a variable written by one thread is neither read nor written                  
by any concurrently active thread. 
In OpenMP, optional “clauses” on parallel directives can specify how many threads to create, and               
which iterations of the loop to perform in which thread. 
A private variable should be reduced across all threads at the end of the loop, using a commutative                  
operator. 
schedule(static) clause indicates that the compiler should divide the iterations evenly among            
threads, in contiguous groups. 
The default(shared) clause indicates that all variables should be shared by all threads, unless              
otherwise specified. 
reduction(+:sum) clause makes sum an exception: every thread should have its own copy and the               
copies should be combined (with +) at the end. 
In Ada, when the declaration is elaborated, a thread is created to execute the code.  
It calls its threads as tasks, we may write, 
procedure P is 
task T is 
... 
end T; 
begin -- P 
... 
end P; 
 



 
 
Fig: Lifetime of concurrent threads. With co-begin, parallel loops, or launch-at elaboration (a),             
threads are always properly nested.  
With fork/join (b), more general patterns are possible. 
Task T has its own begin. . . end block, which it begins to execute as soon as control enters                    
procedure P. 
If P is recursive, there may be many instances of T at the same time, all of which execute                   
concurrently with each other and with whatever task is executing P. 
 
Fork/Join 
The fork operation is more general: it makes the creation of threads an explicit, executable               
operation. The companion join operation, when provided, allows a thread to wait for the              
completion of a previously forked thread. 
Ada allows the programmer to define task types: 
task type T is 
... 
begin 
... 
end T; 
The programmer may then declare variables of type access T (pointer to T), and may create new                 
tasks via dynamic allocation: 
pt : access T := new T; 
The new operation is a fork; it creates a new thread and starts it executing.  
There is no explicit join operation in Ada. 
In Java one obtains a thread by constructing an object of some class derived from a predefined                 
class called Thread: 
class ImageRenderer extends Thread { 
... 
ImageRenderer( args ) { 
// constructor 
} 
public void run() { 
// code to be run by the thread 
} 
} 
... 
ImageRenderer rend = new ImageRenderer( constructor args ); 



The use of new resembles the creation of dynamic tasks in Ada. 
rend.start(); 
Start makes the thread runnable, arranges for it to execute its run method, and returns to the                 
caller. 
There is also a join method: 
rend.join(); // wait for completion _ 
The constructor for a Java thread typically saves its arguments in fields that are later accessed by                 
run.  
The class derived from Thread functions as an object closure. 
Tasks to be accomplished are represented by objects that support the Runnable interface, and              
these are passed to an Executor object.  
The Executor in turn farms them out to a managed pool of threads. 
class ImageRenderer implements Runnable { 
... 
} 
... 
Executor pool = Executors.newFixedThreadPool(4); 
... 
pool.execute(new ImageRenderer( constructor args )); 
Each task specified in a call to pool.execute will be run by one of these threads. 
To fork a logically concurrent task in Cilk, one simply prepends the keywork spawn to an ordinary                 
function call: 
spawn foo( args ); 
At some later time, invocation of the built-in operation sync will join with all tasks previously                
spawned by the calling task. 
Rather than have an existing thread execute a receive operation, a server can bind a               
communication channel to a local thread body or subroutine. 
If we have two threads—one that executes the caller and another that executes the callee.  
In this case, the call is essentially a fork/join pair.  
The caller waits for the callee to terminate before continuing execution. 
In SR and Hermes, the callee can execute a reply operation that returns results to the caller                 
without terminating.  
After an early reply, the two threads continue concurrently. 
 
Implementation of Threads 
The threads of a concurrent program are usually implemented on top of one or more processes 
provided by the operating system. 
The problem with putting every thread on a separate process is that processes are simply too 
expensive in many operating systems. 
Because they are implemented in the kernel, performing any operation on them requires a system 
call. 
The typical implementation, starts with coroutines. 
Coroutines are a sequential control-flow mechanism: the programmer can suspend the current 
coroutine and resume a specific alternative by calling the transfer operation. 



 
Fig. shows Two-level implementation of threads.  
A thread scheduler, implemented in a library or language run-time package, multiplexes threads             
on top of one or more kernel-level processes. 
We hide the argument to transfer by implementing a scheduler that chooses which thread to run                
next when the current thread yields the processor.  
Second, we implement a preemption mechanism that suspends the current thread automatically            
on 
a regular basis, giving other threads a chance to run. 
Uniprocessor Scheduling 
At any particular time, a thread is either blocked or runnable. 
A runnable thread may actually be running on some process or it may be awaiting its chance to do                   
so. 
Context blocks for threads that are runnable but not currently running reside on a queue called                
the ready list. 

 
Fig: Data structures of a simple scheduler.  
A designated current thread is running. 
Threads on the ready list are runnable.  
Other threads are blocked, waiting for various conditions to become true. 
If threads run on top of more than one OS-level process, each such process will have its own                  
current thread variable. 
To yield the processor to another thread, a running thread calls the scheduler: 
 



procedure reschedule 
t : thread := dequeue(ready list) 
transfer(t) 
If it is blocking for the sake of fairness—to give some other thread a chance to run—then it                  
enqueues its context block on the ready list. 
To block for synchronization, a thread adds itself to a queue associated with the awaited               
condition. 
With cooperative multithreading, any long-running thread must yield the processor explicitly from            
time to time (e.g., at the tops of loops), to allow other threads to run. 
Preemption: On many systems we can use timer signals for preemptive multithreading. 
When switching between threads we ask the operating system -which has access to the hardware               
clock to deliver a signal to the currently running process at a specified time in the future.  
The OS delivers the signal by saving the context -registers and pc of the process and transferring 
control to a previously specified handler routine in the language run-time system. 
The thread had just executed a call to the standard yield routine, and was about to execute its                  
prologue.  
The handler then “returns” into yield, which transfers control to some other thread. 
Suppose that a signal arrives when the currently running process has just enqueued the currently               
running thread onto the ready list in yield, and is about to call reschedule. 
When the signal handler “returns” into yield, the process will put the current thread into the                 

ready list a second time.  
To resolve the race and avoid corruption of the ready list, thread packages commonly disable               
signal delivery during scheduler calls: 
procedure yield 
disable signals 
enqueue(ready list, current thread) 
reschedule 
reenable signals 
To close a Timing window—the interval in which a concurrent event may compromise program              
correctness, the caller must ensure that signals are disabled before checking the condition. 
Multiprocessor Scheduling 
We can extend preemptive thread package to run on top of more than one OS-provided process                
by arranging for the processes to share the ready list and related data structures. 
If the processes share a single processor, then the program will be able to make forward progress 
even when all but one of the processes are blocked in the operating system. 
Any thread that is runnable is placed in the ready list, where it becomes a candidate for execution                   

by any of the application’s processes. 
When a process calls reschedule, the queue-based ready list will give it the longest-waiting thread. 
To resolve the races, we must implement additional synchronization to make scheduler operations             
in separate processes atomic. 
Implementing Synchronization 
Synchronization serves either to make some operation atomic or to delay that operation until              
some necessary precondition holds. 
Atomicity is most commonly achieved with mutual exclusion locks.  
Mutual exclusion ensures that only one thread is executing some critical section of code at a given                 
point in time. 
Critical sections typically transform a shared data structure from one consistent state to another.  
Condition synchronization allows a thread to wait for a precondition, often expressed as a              
predicate on the value(s) in one or more shared variables. 
Implementation of parallel threads, requires both atomicity and condition synchronization. 



If two processes are racing to dequeue the last thread from the ready list, we do care that the                   
implementation of dequeue does not have internal, instruction-level races that might compromise            
the ready list’s integrity. 
In Nonblocking synchronization, atomicity is achieved without the need for mutual exclusion. 
Busy-Wait Synchronization 
Busy-wait condition synchronization is easy if we can cast a condition in the form of “location X                 
contains value Y ”: a thread that needs to wait for the condition can simply read X in a loop,                    
waiting for Y to appear. 
Spin Locks 
A simple test-and-test_and_set lock is that, waiting processes spin with ordinary read (load) 
instructions until the lock appears to be free, then use test_and_set to acquire it.  
The very first access is a test_and_set. 
Hardware designers began to equip their processors with instructions that read, modify, and write 
a 
memory location as a single atomic operation.  
The simplest such instruction is known as test_and_set. 
It sets a Boolean variable to true and returns an indication of whether the variable was previously 
false.  
Given test_and_set, acquiring a spin lock is almost trivial: 
 
while not test and set(L) 
– – nothing – – spin 
Overdemand for hardware resources is known as contention, and is a major obstacle to good 
performance on large machines. 
On a large machine, contention can be further reduced by implementing a backoff strategy, in               
which a thread that is unsuccessful in attempting to acquire a lock waits for a while before trying                  
again. 
Using instructions like atomic_add or compare_and_swap, one can build spin locks that are fair, in               
the sense that threads are guaranteed to acquire the lock in the order in which they first attempt                  
to do so. 
An important variant on mutual exclusion is the reader–writer lock . 
Reader–writer locks recognize that if several threads wish to read the same data structure, they 
can do so simultaneously without mutual interference. 
Barriers 
A barrier serves to provide synchronization. 
The simplest way to implement a busy-wait barrier is to use a globally shared counter, modified by 
an atomic fetch_and_decrement instruction.  
The counter begins at n, the number of threads in the program.  
As each thread reaches the barrier it decrements the counter. 
If it is not the last to arrive, the thread then spins on a Boolean flag. 
Nonblocking Algorithms 
Suppose we wish to make an arbitrary update with CAS to a shared location: 
x := foo(x); 
Note that this update involves at least two accesses to x: one to read the old value and one to 
write the new. 
We can also do this without a lock, using compare_and_swap: 
 
start: 
r1 := x 
r2 := foo(r1) – – probably a multi-instruction sequence 
r2 := CAS(x, r1, r2) – – replace x if it hasn’t changed 



if !r2 goto start 
This example illustrates that CAS is a universal primitive for single-location atomic update. 
An operation is said to be nonblocking if in every reachable state of the system, any thread                 
executing that operation is guaranteed to complete in a finite number of steps if it gets to run by                   
itself. 
The CAS-based code of is nonblocking : if the CAS operation fails, it is because some other thread                  
has made progress. 
Performing cleanup for another thread’s operation is often referred to as helping. 
The dequeue operation does not require cleanup, but the enqueue operation does. 
Nonblocking algorithms have several advantages over blocking algorithms. 
They are inherently tolerant of page faults and pre-emption. 
They can also safely be used in signal (event) and interrupt handlers. 
Memory Consistency Models 
Most programmers expect a multiprocessor to be sequentially consistent—to make all writes            
visible to all processors in the same order, and to make any given processor’s writes visible in the                  
order they were performed. 
In relaxed memory models, certain loads and stores may appear to occur “out of order”. 
Stores that are not yet visible in even the L1 cache -or that occurred after a store that is not yet                     
visible are kept in a queue called the write buffer. 

 
A’s write of inspected precedes its read of X in program order. 
 B’s write of X precedes its read of inspected in program order.  
B’s read of inspected appears to precede A’s write of inspected, because it sees the unset value. 
To avoid temporal loops, implementors of concurrent languages and libraries must generally use             
special synchronization or memory fence instructions. 
Both A and B must prevent their read from bypassing -completing before; the logically earlier               
write. 

 
Figure shows the concurrent propagation of writes.  
On some machines,it is possible for concurrent writes to reach processors in different orders.  
Arrows show apparent temporal ordering.  
Here C may read cy = 0 and cx = 1, while D reads dx = 0 and dy = 1. 
Multiprocessor memory behavior can in general be described in terms of a transitive happens              
before relationship between instructions.  
Every manufacturer ensures that instructions within a given processor appear to occur in program              
order. 
We can write data-race–free programs according to some -language-specific memory model.  



The model specifies which language-level operations are guaranteed to be ordered across threads.             
A data-race–free program never performs conflicting operations unless they are ordered by the             
model. 
Memory consistency models tend to distinguish between dataraces-races between ordinary loads           
and stores) and synchronization races -races between lock operations, volatile loads and stores, or              
other distinguished operations. 
Data races also known as memory races are generally considered program bugs; 
Scheduler Implementation 
To implement user-level threads, OS-level processes must synchronize access to the ready list and              
condition queues, generally by means of spinning.  
In the code for a simple reentrant thread scheduler, assumes a single “low-level” lock -scheduler               
lock that protects the entire scheduler. 
Before saving its context block on a queue -e.g., in yield or sleep on, a thread must acquire the                   
scheduler lock. 
It must then release the lock after returning from reschedule. 
A spin-then-yield lock is a busy-wait mechanism: the currently running process relinquishes the             
processor, but remains on the ready list. 
It will perform a test_and_set operation every time every time the lock appears to be free, until it                   

finally succeeds. 
Semaphores are the most common form of scheduler-based synchronization. 
We use a bounded buffer abstraction to illustrate the semantics of various scheduler-based             
synchronization mechanisms. 
A bounded buffer is a concurrent queue of limited size into which producer threads insert data,                
and from which consumer threads remove data.  
The buffer serves to even out fluctuations in the relative rates of progress of the two classes of                  
threads, increasing system throughput. 
 
Semaphores 
Semaphores are the oldest of the scheduler-based synchronization mechanisms. 
A semaphore is basically a counter with two associated operations, P and V. 
A thread that calls P atomically decrements the counter and then waits until it is non-negative. 
 A thread that calls V atomically increments the counter and wakes up a waiting thread, if any.  
It is generally assumed that semaphores are fair, in the sense that threads complete P operations                
in the same order they start them. 
A semaphore whose counter is initialized to 1 and for which P and V operations always occur in                  
matched pairs is known as a binary semaphore.  
It serves as a scheduler-based mutual exclusion lock: the P operation acquires the lock; V releases                
it. 
A semaphore-based solution to the bounded buffer problem uses a binary semaphore for mutual              
exclusion, and two general -or counting semaphores for condition synchronization. 
Monitor:- 
A monitor is a module or object with operations, internal state, and a number of condition                
variables. Only one operation of a given monitor is allowed to be active at a given point in time. 
Any operation may suspend itself by waiting on a condition variable. 
An operation may also signal a condition variable, in which case one of the waiting threads is                  

resumed. 
Monitors employs one thread queue for every condition variable, plus two bookkeeping queues:             
the entry queue and the urgent queue. 
Mesa specifies that signals are only hints: the language runtime system moves some waiting              
thread to the ready list, but the signaler retains control of the monitor, and the waiter must                 
recheck the condition when it awakes. 



while not desired condition 
wait(condition variable) 
A wait in a nested sequence of monitor operations will release mutual exclusion on the innermost                
monitor, but will leave the outer monitors locked. 
This situation can lead to deadlock if the only way for another thread to reach a corresponding                 
signal operation is through the same outer monitors. 
A conditional critical region also specifies a Boolean condition, which must be true before control               
will enter the region: 
 
region protected variable, when Boolean condition do 
. . . 
end region 
Synchronization in Ada 95 
Ada 95 augments this mechanism with a notion of protected object. 
A protected object can have three types of methods: functions, procedures, and entries. 
 Functions can only read the fields of the object; procedures and entries can read and write them. 
An entry can have a Boolean expression guard, for which the calling task (thread) will wait before                 
beginning execution. 
An entry supports three special forms of call: timed calls, which abort after waiting for a specified                 
amount of time. 
Conditional calls, execute alternative code if the call cannot proceed immediately, and            
asynchronous calls, begin executing alternative code immediately, but abort it if the call is able to                
proceed before the alternative completes. 
Synchronization in Java 
In Java, every object accessible to more than one thread has an implicit mutual exclusion lock,                
acquired and released by means of synchronized statements: 
 
synchronized (my_shared_obj) { 
... // critical section 
} 
All executions of synchronized statements that refer to the same shared object exclude one              
another in time.  
Java allows a thread to be awoken for spurious reasons; programs must therefore embed the use                
of wait within a condition-testing loop: 
while (!condition) { 
wait(); 
} 
As an alternative to synchronized statements and methods, the programmer may create explicit             
Lock variables. 
Lock l = new ReentrantLock(); 
l.lock(); 
try { 
... // critical section 
} finally { 
l.unlock(); 
} 
Atomicity without Locks 
The basic idea of Transactional Memory is very simple: the programmer labels code blocks as 
atomic. 
atomic { 
– – your code here 



} 
The underlying system takes responsibility for executing these blocks in parallel whenever            
possible. 
 
Message Passing: Shared-memory concurrency has become ubiquitous on multicore processors          
and multiprocessor servers.  
Message passing, however, dominates both distributed and high-end computing. 
Run-time program Management 
We use the term run-time system to refer to the set of libraries on which the language                 
implementation depends for correct operation. 
In more complex cases, the compiler generates program-specific metadata that the runtime must             
inspect to do its job. 
Some languages eg: C have very small run-time systems: most of the user-level code required to                
execute a given source program. 
This is either generated directly by the compiler or contained in language-independent libraries. 
C#, for example, is heavily dependent on a run-time system defined by the Common Language               
Infrastructure (CLI) standard. 
The coupling between compiler and runtime runs deeper than this, however: the CLI programming              
interface is so complete as to fully hide the underlying hardware. 
Such a runtime is known as a virtual machine. 
Many virtual machines use a just-in-time (JIT) compiler to translate their instruction set to 
that of the underlying hardware. 
Some virtual machines—notably the Java Virtual Machine (JVM)—are language-specific. 
Microsoft introduced the term managed code to refer to programs that run on top of a virtual                 
machine. 
Virtual Machines 
A virtual machine (VM) provides a complete programming environment: its application           
programming interface (API) includes everything required for correct execution of the programs            
that run above it. 
Every virtual machine API includes an instruction set architecture (ISA) in which to express              
programs.  
This may be the same as the instruction set of some existing physical machine, or it may be an                   
artificial instruction set. 
Virtual machines tend to be characterized as either system VMs or process VMs.  
A system VM faithfully emulates all the hardware facilities needed to run a standard OS, including                
both privileged and unprivileged instructions, memory-mapped I/O etc. 
System VMs are sometimes called virtual machine monitors (VMMs), because they multiplex a             
single physical machine among a collection of “guest” operating systems. 
They monitor the execution of multiple virtual machines. 
VMMs are also increasingly popular on personal computers, where products like Parallels Desktop             
and VMware Fusion allow users to run programs on top of more than one OS at once. 
It is process VMs, that have had the greatest impact on programming language design and               
implementation. 
Process VMs were originally conceived as a way to increase program portability and to quickly               
“bootstrap” languages on new hardware. 
The Java Virtual Machine 
A JIT compiler was added in 1998 with the release of Java 2. 
Java byte code (JBC) need to be produced from Java source. 
The principal requirement, for both compilers and assemblers, is that they generate correct class              
files. 



These have a special format understood by the JVM, and must satisfy a variety of structural and                  
semantic constraints. 
A JVM is typically given the name of a class file containing the static method main.  
It loads this class into memory, verifies that it satisfies a variety of required constraints, allocates                
any static fields, links it to any preloaded library routines. 
It invokes any initialization code provided by the programmer for classes or static fields.  
Finally, it calls main in a single thread. 
There is a global constant pool, a set of registers and a stack for each thread, a method area to                    
hold executable byte code, and a heap for dynamically allocated objects. 
The constant pool contains both program constants and a variety of symbol table information              
needed by the JVM and other tools. 
class Hello { 
public static void main(String args[]) { 
System.out.println("Hello, world!"); 
} 
}; 
When compiled with Sun’s javac compiler, the constant pool for this program has 28 separate               
entries. 
Four of the entries (8, 12, 25, 28) are type signatures for methods and fields.  
In the format shown here, “V” indicates void; “Lname;” is a fully qualified class. 
A program running on the JVM begins with a single thread. 
Each thread has a small set of base registers, a stack of method call frames, and an optional                  
traditional stack on which to call native (non-Java) methods. 
Each frame on the method call stack contains an array of local variables, an operand stack for                 
evaluation of the method’s expressions, and a reference into the constant pool that identifies              
information needed for dynamic linking of called methods. 
Heap:- In keeping with the type system of the Java language, a datum in the local variable array or                   
the operand stack is always either a reference or a value of a built-in scalar type.  
Structured data (objects and arrays) must always lie in the heap. 
When a thread releases a monitor or writes a volatile variable, the JVM must ensure that all                 
previous updates to the thread’s cache have been written back to memory. 
Class Files 
Physically, a JVM class file is stored as a stream of bytes. 
Multiple class files may be combined into a Java archive (.jar) file. 
Logically, a class file has a well-defined hierarchical structure. 
Class files contain extensive information not typically found in an executable object file.  
Examples include access flags for classes, fields, and methods -public, private, protected, static,             
final, synchronized, native, abstract, strictfp; symbol table information that is built into to the              
structure of the file etc.. 
Byte Code 
The byte code for a method or for a constructor or a class initializer appears in an entry in the class                     
file’s method table. 
 It is accompanied by: 
An indication of the number of local variables, including parameters 
The maximum depth required in the operand stack 
A table of exception handler information. 
 
Instruction Set 
 Java byte code was designed to be both simple and compact. 
Orthogonality was a strictly secondary concern.  
Every instruction begins with a single-byte opcode. 



Load/store: Move values back and forth between the operand stack and the local variable array. 
Arithmetic: Perform integer or floating point operations on values in the operand stack. 
Operand stack management: Push and pop; duplicate; swap. 
Control transfer: Perform conditional, unconditional, or multiway branches (switch). 
Method calls: Call and return from ordinary and static methods -including constructors and             
initializers of classes and interfaces. 
Verification: When it first loads a class file, the JVM checks the top-level structure of the file. 
Among other things, it verifies that the file begins with the appropriate “magic number,” that the                
specified sizes of the various sections of the file are all within bounds. 
These sizes add up to the size of the overall file.  
When it links the class file into the rest of the program, the JVM checks additional constraints. 
These checks require data flow analysis to determine that desired properties-initialization status,            
types of slots in the local stack frame, depth of the operand stack are the same on every possible                   
path to a given point in the program. 
The Common Language Infrastructure 
The Common Language Infrastructure (CLI) benefitted from experience with Java and the JVM. 
Microsoft developed increasingly sophisticated versions of its Component Object Model (COM),           
first to communicate with, then to call, and finally to share data across program components               
written in multiple languages. 
In .NET, Common Type System (CTS)- provides a superset of what any particular language needs,               
while requiring common semantics and implementation wherever the type systems of more than             
one language intersect. 
In addition to the CTS, the CLI defines a virtual machine architecture, the VES (Virtual Execution                
System); an instruction set for that machine, the CIL (Common Intermediate Language); and a              
portable file format for code and metadata, PE (Portable Executable) assemblies. 
Microsoft calls its CLI implementation the Common Language Runtime (CLR); it refers to CIL as               
Microsoft Intermediate Language (MSIL). 
Richer Type System- The Common Type System supports both value and reference variables of              
structured types -the JVM is limited to references. 
Richer Calling Mechanisms- To facilitate the implementation of functional languages, the CLI            
provides explicit tail-recursive function calls. 
Unsafe Code- For the benefit of C, C++, and other non–type-safe languages, the CLI supports               
explicitly unsafe operations: non converting type casts, dynamic allocation of          
non–garbage-collected memory etc..  
Verifiable code, cannot use these features, and unverifiable code, which can use them. 
Miscellaneous- For the sake of multiple languages, the CLI supports global data and functions, local               
variables whose shapes and sizes are not statically known etc.. 
The CommonType System 
The VES and CIL provide instructions to manipulate data of certain built-in types. 
A few additional types are predefined, and have built-in names in CLI metadata. 
The Common Language Specification (CLS) defines a subset of the CTS intended for cross-language              
interaction. 
Built-inTypes: The VES and CIL provide instructions to manipulate the following types:- 
Integers in 8-, 16-, 32-, and 64-bit lengths, both signed and unsigned 
“Native” integers, of the length supported by the underlying hardware, both signed and unsigned 
IEEE floating point, both single and double precision. 
Object references and “managed” pointers. 
ConstructedTypes- To the built-in types, the CTS adds the following. 
Dynamically allocated instances of class, interface, array, and delegate types 
Methods—Function types. 
Properties—Getters and setters for objects. 



Events—Lists of delegates, associated with an object, that should be called in response to changes               
to the object.  
Typed references—Pointers bundled together with a type descriptor, used for C-style variable            
argument lists. 
Unmanaged pointers—As in C, these can point to just about anything, and support pointer              
arithmetic etc.. 
CLS:-The Common Language Specification (CLS) defines a subset of the CTS that most (though not               
all) languages can accommodate. 
It omits several of the types provided by the CTS, including signed 8-bit integers; unsigned native,                 

16-, 32-, and 64-bit integers etc.. 
Generics:- Java generics were defined in terms of type erasure, which effectively converts all              
generic types to Object before generating byte code.  
C# generics were defined in terms of reification, which creates a new concrete type every time a                 
generic is instantiated with different arguments. 
Metadata and Assemblies 
Portable Executable (PE) assemblies are the rough equivalent of Java .jar files: they contain the               
code for a collection of CLI classes.  
PE is based on the Common Object File Format (COFF), originally developed for AT&T’s System V                
Unix. 
The metadata of an assembly has a complex internal structure.  
The metadata begins with a manifest that specifies the files included and directly referenced, the               
types exported and imported, versioning information etc.. 
The Common Intermediate Language 
Just as the CLI VES bears a strong resemblance to the JVM, CIL bears a strong resemblance to JBC. 
Version 4 of the ECMA standard defines approximately 250 instructions, most with single-byte             
opcodes. 
Verification: The CLI distinguishes between verifiable and unverifiable code.  
Verifiable code must satisfy a large variety of constraints that guarantee type safety and catch               
many common programming errors. 
Unverifiable code can make use of unsafe language features e.g., unions and pointer arithmetic in               
C, but must still conform to more basic rules for validity i.e well formedness of CIL. 
Late Binding of Machine Code 
Just-in-time (JIT) compilation, which translates a program from source or intermediate form into             
machine language immediately before each separate run of the program. 
We consider binary translation and binary rewriting systems, which perform compiler-like           
operations on programs without access to source code. 
Just-in-Time and Dynamic Compilation 
A JIT system compiles programs immediately prior to execution, it can add significant delay to               
program start-up time. 
JIT compilers tend to focus on the simpler forms of target code improvement.  
Specifically, they often limit themselves to so-called local improvements, which operate within            
individual control flow constructs.  
Improvements at the global (whole method) and interprocedural (whole program) level are usually             
too expensive to consider. 
Like a lazy linker, a JIT compiler may perform its work incrementally. 
It begins by compiling only the class file that contains the program entry point (i.e., main), leaving                 
hooks in the code that call into the run-time system wherever the program is supposed to call a                  
method in another class file. 
To eliminate the latency of compiling even the original class file, the language implementation              
may incorporate both an interpreter and a JIT compiler.  
Execution begins in the interpreter. 



When a class file is JIT compiled, the language implementation can cache the resulting machine               
code for later use. 
JIT compilation affords the opportunity to perform certain kinds of code improvement that are              
usually not feasible in traditional compilers. 
Dynamic Compilation 
Compilation must be delayed, either because the source or byte code was not created or               
discovered 
until run time, or because we wish to perform optimizations that depend on information gathered               
during execution. 
 In these cases we say the language implementation employs dynamic compilation. 
A dynamic compiler can use statistics gathered by run-time profiling to identify hot paths through               
the 
code, which it then optimizes in the background.  
By rearranging the code to make hot paths contiguous in memory, it may also improve the                
performance of the instruction cache. 
If foo is a static method of class C, then calls to C.foo can safely be in-lined.  
Similarly, if bar is a final method of class C -one that cannot be overridden, and o is an object of                     
class 
C, then calls to o.bar can safely be in-lined. 
A dynamic compiler can perform the optimization if it verifies that there exists no class derived                
from c anywhere in the -current version of the program. 
The compiler might choose to generate code along the following lines: 
 
static void f(C o) { 
if (o.getClass() == C.class) { 
... // code with in-lined calls -- much faster 
} else { 
... // code without in-lined calls 
} 
} 
An Example System: the Hot Spot Java Compiler 
HotSpot is Sun’s principal JVM and JIT compiler for desktop and server systems. 
It was first released in 1999, and is available as open source. 
HotSpot takes its name from its use of dynamic compilation to improve the performance of hot                
code paths.  
Newly loaded class files are initially interpreted. 
Methods that are executed frequently are selected by the JVM for compilation and are              
subsequently patched into the program on the fly.  
The Hot Spot compiler can be configured to operate in either “client”or “server” 
mode.  
Client mode is optimized for lower start-up latency. 
Server mode is optimized to generate faster code. 
 
 
Other Example Systems 
Like Hot Spot, Microsoft’s CIL-to-machine-code compiler performs dynamic optimization of hot           
code paths.  
The .NET source-to-CIL compilers are also explicitly available to programs through the            
System.CodeDom.Compiler API. 
Many Lisp dialects and implementations have employed an explicit mix of interpretation and             
compilation.  



Common Lisp includes a compile function that takes the name of an existing function as argument. 
As a side effect, it invokes the compiler on that function, after which the function will presumably                 
run much faster: 
(defun square (x) (* x x))                ; outermost level function declaration 
(square 3)                                       ; 9 
(compile ’square) 
(square 3)                                        ; also 9 (but faster :-) 
 
Binary Translation 
Just-in-time and dynamic compilers assume the availability of source code or of byte code that               
retains all of the semantic information of the source. 
There are times, however, when it can be useful to recompile object code.  
This process is known as binary translation. 
It allows already-compiled programs to be run on a machine with a different instruction set               
architecture. 
The principal challenge for binary translation is the loss of information in the original              
source-to-object code translation.  
Object code typically lacks both type information and the clearly delineated subroutines and             
control-flow constructs of source code and byte code. 
The typical binary translator reads an object file and reconstructs a control flow graph. 
Static binary translation is not always possible for arbitrary object code.  
In addition to computed branches, problems include self-modifying code –programs that write to             
their own instruction space, dynamically generated code e.g., for single-pointer closures, and            
various forms of introspection. 
Where and When toTranslate 
By placing the interpreter (emulator) in the lowest levels of the operating system, Apple was able                
to significantly reduce its time to market. 
Binary translators display even more diversity in their choice of what and when to translate.  
In the simplest case, translation is a one-time, off-line activity akin to conventional compilation. 
Digital Equipment Corp. (DEC) in the early 1990s constructed a pair of translators for their newly                
developed Alpha processor. 
For the sake of transparency -to avoid modification of programs on disk, and to accommodate 
dynamic linking, translated code is usually not retained from one execution to the next.  
Systems in this style include Apple’s Rosetta; HP’s Aries etc.. 
 
 
Dynamic Optimization 
In a long-running program, a dynamic translator may revisit hot paths and optimize them more               
aggressively.  
A similar strategy can also be applied to programs that don’t need translation—that is, to               
programs that already exist as machine code for the underlying architecture.  
This sort of dynamic optimization has been reported to improve performance by as much as 20%                
over already-optimized code, by exploiting run-time profiling information. 
Much of the technology of dynamic optimization was pioneered by the Dynamo project at HP Labs                
in the late 1990s. 
Dynamo’s key innovation was the concept of a partial execution trace: a hot path whose basic                
blocks can be reorganized, optimized, and cached as a linear sequence. 
Binary Rewriting 
Binary rewriting is a general technique to modify existing executable programs, typically to insert              
instrumentation of some kind. 
The most common form of instrumentation collects profiling information.  



One might count the number of times that each subroutine is called, for example, or the number                 
of 
times that each loop iterates. 
 
Binary rewriting can be used to:- 
-Simulate new architectures 
-Evaluate the coverage of test suites, by identifying paths through the code that are not explored                
by a series of tests. 
-Implement model checking for parallel programs, a process that exposes race conditions  
-“Audit”the quality of a compiler’s optimizations. 
ATOM was a static tool that modified a program for subsequent execution. 
With the demise of the Alpha processor, use of ATOM has been largely supplanted by Pin, a binary                  
rewriter developed by researchers at Intel in the early 2000s, and distributed as open source. 
Pin can even be attached to an already-running application, much like the symbolic debuggers. 
Mobile Code and Sandboxing 
Portability is one of the principal motivations for late binding of machine code. 
Code that has been compiled for one machine architecture or operating system cannot generally              
be run on another.  
Code in a byte code (JBC, CIL) or scripting language (JavaScript, Visual Basic), however, is compact                
and machine independent: 
It can easily be moved over the Internet and run on almost any platform.  
Such mobile code is increasingly common. 
Cell phone platforms are using mobile code to distribute games, productivity tools, and interactive              
media that run on the phones themselves. 
In some sense, mobile code is nothing new: almost all our software comes from other sources; we                 
buy it on a DVD or download it over the Internet and install it on our machines. 
Mobile code carries a variety of risks.  
It may access and reveal confidential information (spyware). 
 It may interfere with normal use of the computer in annoying ways (adware).  
It may damage existing programs or data, or save copies of itself that run without the user’s intent                  
(malware of various kinds).  
In the worst cases, it may use the host machine as a “zombie” from which to launch attacks on                   
other users. 
To protect against unwanted behavior, both accidental and malicious, mobile code must be             
executed in some sort of sandbox. 
Sandbox creation is difficult because of the variety of resources that must be protected. 
At a minimum, one needs to monitor or limit access to processor cycles, memory outside the                 

code’s own instructions and data, the file system, network interfaces, other devices etc.. 
Sandboxing mechanisms lie at the boundary between language implementation and operating           
systems.  
The two most common techniques are binary rewriting and execution in an untrusting interpreter. 
Reflection 
Lisp has long allowed a program to reason about its own internal structure and types -this sort of                  
reasoning is sometimes called introspection. 
Java and C# provide similar functionality through a reflection API that allows a program to peruse                
its own metadata.  
Reflection appears in several other languages as well, including Prolog. 
Reflection is essential: it allows a library or application function to type check its own arguments. 
Reflection can be useful when printing diagnostics.  
Suppose we are trying to debug an old-style -nongeneric queue in Java, and we want to trace the                  
objects that move through it. 



 In the dequeue method, just before returning an object rtn of type Object, we might write 
 
System.out.println("Dequeued a " + rtn.getClass().getName()); 
If the dequeued object is a boxed int, we will see 
 
Dequeued a java.lang.Integer 
In a language with reflection, these tools have no need to examine source code: if they load the                  
already-compiled program into their own address space, they can use the reflection API to query               
the symbol table information created by the compiler.  
Interpreters, debuggers, and profilers can work in a similar fashion. 
 In a distributed system, a program can use reflection to create a general-purpose serialization 
mechanism, capable of transforming an almost arbitrary structure into a linear stream of bytes              
that can be sent over a network and reassembled at the other end. 
The most common pitfall of reflection, at least for object-oriented languages, is the temptation to               
write case (switch) statements driven by type information: 
procedure rotate(s : shape) 
case shape.type of        – – don’t do this in Java! 
square: rotate square(s) 
triangle: rotate triangle(s) 
circle:                  – – no-op 
Java 5 Reflection 
Java’s root class, Object, supports a getClass method that returns an instance of java.lang.Class.              
Objects of this class in turn support a large number of reflection operations, among them the                
getName method. 
A call to getName returns the fully qualified name of the class, as it is embedded in the package                   
hierarchy.  
For array types, naming conventions are taken from the JVM: 
int[] A = new int[10]; 
System.out.println(A.getClass().getName()); // prints "[I" 
String[] C = new String[10]; 
System.out.println(C.getClass().getName()); // "[Ljava.lang.String;" 
Foo[][] D = new Foo[10][10]; 
System.out.println(D.getClass().getName()); // "[[LFoo;" 
Here Foo is assumed to be a user-defined class in the default (outermost) package. 
One can even use reflection to call a method of an object whose class is not known at compile                   
time. Suppose that someone has created a stack containing a single integer: 
Stack s = new Stack(); 
s.push(new Integer(3)); 
Now suppose we are passed this stack as a parameter u of Object type.  
We can use reflection to explore the concrete type of u.  
We will discover that its second method, named pop, takes no arguments and returns an Object                
result. 
We can call this method using Method.invoke: 
Method uMethods[] = u.getClass().getMethods(); 
Method method1 = uMethods[1]; 
Object rtn = method1.invoke(u); // u.pop() 
The principal difference between reflection in Java and C# on the one hand, and in scripting                
languages on the other, is that the scripting languages—like Lisp—are dynamically typed. 
In Ruby, for example, we can discover the class of an object, the methods of a class or object, and                    
the number of parameters expected by each method. 
The parameters themselves are untyped until the method is called. 



Both Java and C# allow the programmer to extend the metadata saved by the compiler. 
 In Java, these extensions take the form of annotations attached to declarations. 
In general, a Java annotation resembles an interface whose methods take no parameters, throw              
no exceptions, and return values of one of a limited number of predefined types. 
Java annotations were inspired at least in part by experience with the earlier javadoc tool, which                
produces HTML-formatted documentation based on structured comments in Java source code. 
JML, the Java Modeling Language, allows the programmer to specify preconditions,           
post-conditions, and invariants for classes, methods, and statements. 
Java 5 introduced a program called apt designed to facilitate the construction of annotation              
processing tools.  
The functionality of this tool was subsequently integrated into Sun’s Java 6 compiler. 
Symbolic Debugging 
Most programmers are familiar with symbolic debuggers: they are built into most programming             
language interpreters, virtual machines, and integrated program development environments.  
They are also available as stand-alone tools, of which the best known is GNU’s gdb. 
The adjective symbolic refers to a debugger’s understanding of high-level language syntax—the            
symbols in the original program. 
In a typical debugging session, the user starts a program under the control of the debugger, or                 
attaches the debugger to an already running program.  
The debugger then allows the user to perform two main kinds of operations.  
One kind inspects or modifies program data; the other controls execution: starting, stopping,             
stepping establishing breakpoints and watchpoints.  
A breakpoint specifies that execution should stop if it reaches a particular location in the source                
code.  
A watchpoint specifies that execution should stop if a particular variable is read or written.  
Both breakpoints and watchpoints can typically be made conditional, so that execution stops only              
if a particular Boolean predicate evaluates to true. 
Both data and control operations depend critically on symbolic information. 
In gdb, the command print a.b[i] needs to parse the to-be-printed expression; it also needs to                
recognize that a and i are in scope at the point where the program is currently stopped. 
b is an array-typed field whose index range includes the current value of i. 
Similarly, the command break 123 if i+j == 3 needs to parse the expression i+j; it also needs to                   
recognize that there is an executable. 
Both data and control operations also depend on the ability to manipulate a program from               
outside: to stop and start it, and to read and write its data. 
This control can be implemented in at least three ways.  
The easiest occurs in interpreters. 
The technology of dynamic binary rewriting -as in Dynamo and Pin can also be used to implement                 
debugger control. 
In Unix, debugger control mechanism employs a kernel service known as ptrace.  
The ptrace kernel call allows a debugger to “grab” (attach to) an existing process or to start a                  
process under its control. 
The debugger(tracing process) can specify the address at which it should resume execution, and              
can ask the kernel to run it for a single instruction -a process known as single stepping or until it                     
receives another signal. 
Suppose the traced process is currently stopped, and that before resuming it the debugger wishes               
to set a breakpoint at the beginning of function foo. 
 It does so by replacing the first instruction of the function’s prologue with a special kind of trap. 
For a conditional breakpoint, the debugger evaluates the condition’s predicate when the            
breakpoint occurs. 



If the breakpoint is unconditional, or if the condition is true, the debugger jumps to its command                  
loop 
and waits for user input. 
Some processors provide hardware support to make breakpoints a bit faster. 
The x86, for example has four debugging registers that can be set (in kernel mode) to contain an                  
instruction address. 
In single-stepping mode, it simulates a trap after every user-mode instruction. 
Watch points are a bit trickier.  
The easiest implementation depends on hardware support.  
Suppose we want to drop into the debugger whenever the program modifies some variable x. 
The debugging registers of the x86 and other modern processors can be set to simulate a trap                 
whenever the program writes to x’s address. 
The overhead of repeated context switches between the traced process and the debugger             
dramatically impacts the performance of software watchpoints: slowdowns of 1000× are not            
uncommon.  
Debuggers based on dynamic binary rewriting have the potential to support arbitrary numbers of 
watch points. 
Performance Analysis 
The simplest way to measure, at least approximately, the amount of time spent in each part of                 
the code is to sample the program counter (PC) periodically. 
This approach was exemplified by the classic prof tool in Unix. 

By linking with a special prof library, a program could arrange to receive a periodic timer                 
signal—once a millisecond, say—in response to which it would increment a counter associated             
with the current PC. 
After execution, the prof post-processor would correlate the counters with an address map of the               
program’s code and produce a statistical summary of the percentage of time spent in each               
subroutine and loop.  
While simple, prof had some serious limitations.  
Its results were only approximate, and could not capture fine-grain costs.  
It also failed to distinguish among calls to a given routine from multiple locations. 
If we want to know which of A, B, and C is the biggest contributor to program run time, it is not                      
particularly helpful to learn that all three of them call D where most of the time is actually spent.  
If we want to know whether it is A’s Ds, B’s Ds, or C’s Ds that are so expensive, we can use the                       
more recent gprof tool, which relies on compiler support to instrument procedure prologues. 
The gprof post-processor assumes that the total time spent in D can accurately be apportioned               
among the call sites according to the relative number of calls.  
More sophisticated tools log not only the caller and callee but also the stack backtrace -the                
contents of the dynamic chain, allowing them to cope with the case in which D consumes twice as                  
much time when called from A as it does when called from B or C. 
If the program is underperforming for other reasons, however, we generally need to know why. 
Is it cache misses due to poor locality, perhaps? Branch mispredictions? Poor pipeline             
performance? 
Tools to address these and similar questions generally rely on more extensive instrumentation of              
the code or on some sort of hardware support. 
Consider the task of identifying basic blocks that execute an unusually small number of              
instructions per cycle.  
To find such blocks we can combine (1) the aggregate time spent in each block -obtained by                 
statistical sampling, (2) a count of the number of times each block executes obtained via               
instrumentation, and (3) static knowledge of the number of instructions in each block. 
If basic block i contains ki instructions and executes ni times during a run of a program, it                  
contributes kini dynamic instructions to that run.  



Let   be the total number of instructions in the run.  
If statistical sampling indicates that block i accounts for xi% of the time in the run and xi is                   
significantly larger than (kini)/N, then probably an unusually large number of cache misses take              
place. _ 
Most modern processors provide a set of performance counters that can be used to good effect by                 
performance analysis tools.  
The Intel Pentium M processor, for example, has two performance counters that can be              
configured by the kernel to count any of 47 different kinds of events, including branch               
mispredictions; TLB (address translation) misses; and various kinds of cache misses, interrupts,            
executed instructions, and pipeline stalls. 
Performance counters are generally a scarce resource -one might often wish for many more of               
them. 
Their number, type, and mode of operation varies greatly from processor to processor; direct              
access to them is usually available only in kernel mode. 
Operating systems do not always export that access to user-level programs with a convenient or               
uniform interface. 
 
 
 
 
 
 
 
 
 
 
 
 
 


