
CMPE655 CMPE655 -- ShaabanShaaban
#1 lec # 3 Fall2013 9-10-2013

Parallel Computation/Program IssuesParallel Computation/Program Issues
•• Dependency Analysis:Dependency Analysis:

–– Types of dependencyTypes of dependency
–– Dependency GraphsDependency Graphs
–– BernsteinBernstein’’s Conditions of Parallelisms Conditions of Parallelism

•• Asymptotic Notations for Algorithm Complexity AnalysisAsymptotic Notations for Algorithm Complexity Analysis
• Parallel Random-Access Machine (PRAM)

–– Example: sum algorithm on P processor PRAMExample: sum algorithm on P processor PRAM
•• Network Model of MessageNetwork Model of Message--Passing Passing MulticomputersMulticomputers

– Example: Asynchronous Matrix Vector Product on a Ring
•• Levels of Parallelism in Program ExecutionLevels of Parallelism in Program Execution
•• Hardware Vs. Software ParallelismHardware Vs. Software Parallelism
•• Parallel Task Grain Size Parallel Task Grain Size
•• Software Parallelism Types: Data Vs. Functional ParallelismSoftware Parallelism Types: Data Vs. Functional Parallelism
•• Example Motivating Problem With high levels of concurrencyExample Motivating Problem With high levels of concurrency
•• Limited Parallel Program Concurrency: AmdahlLimited Parallel Program Concurrency: Amdahl’’s Laws Law
•• Parallel Performance Metrics: Degree of Parallelism (DOP)Parallel Performance Metrics: Degree of Parallelism (DOP)

–– Concurrency ProfileConcurrency Profile
•• Steps in Creating a Parallel Program: Steps in Creating a Parallel Program:

–– 11-- Decomposition, 2Decomposition, 2-- Assignment, 3Assignment, 3-- Orchestration, 4Orchestration, 4-- (Mapping + Scheduling) (Mapping + Scheduling)
–– Program Partitioning Example (handout)Program Partitioning Example (handout)
–– Static Multiprocessor Scheduling Example (handout)Static Multiprocessor Scheduling Example (handout)

PCA Chapter 2.1, 2.2

+ Average Parallelism

CMPE655 CMPE655 -- ShaabanShaaban
#2 lec # 3 Fall2013 9-10-2013

Parallel Programs: Definitions
• A parallel program is comprised of a number of tasks running as threads (or

processes) on a number of processing elements that cooperate/communicate as
part of a single parallel computation.

• Task:
– Arbitrary piece of undecomposed work in parallel computation
– Executed sequentially on a single processor; concurrency in parallel

computation is only across tasks.
• Parallel or Independent Tasks:

– Tasks that with no dependencies among them and thus can run in parallel on
different processing elements.

• Parallel Task Grain Size: The amount of computations in a task.
• Process (thread):

– Abstract program entity that performs the computations assigned to a task
– Processes communicate and synchronize to perform their tasks

• Processor or (Processing Element):
– Physical computing engine on which a process executes sequentially
– Processes virtualize machine to programmer

• First write program in terms of processes, then map to processors
• Communication to Computation Ratio (C-to-C Ratio): Represents the amount of

resulting communication between tasks of a parallel program
In general, for a parallel computation, a lower C-to-C ratio is
desirable and usually indicates better parallel performance

Other Parallelization
Overheads

Communication

Computation
Parallel Execution Time

The processor with max. execution time
determines parallel execution time

i.e At Thread Level Parallelism (TLP)

CMPE655 CMPE655 -- ShaabanShaaban
#3 lec # 3 Fall2013 9-10-2013

• Parallel Algorithm Related:
– Available concurrency and profile, grain size, uniformity, patterns.

• Dependencies between computations represented by dependency graph
– Type of parallelism present: Functional and/or data parallelism.
– Required communication/synchronization, uniformity and patterns.
– Data size requirements.
– Communication to computation ratio (C-to-C ratio, lower is better).

• Parallel program Related:
– Programming model used.
– Resulting data/code memory requirements, locality and working set

characteristics.
– Parallel task grain size.
– Assignment (mapping) of tasks to processors: Dynamic or static.
– Cost of communication/synchronization primitives.

• Hardware/Architecture related:
– Total CPU computational power available.
– Types of computation modes supported.
– Shared address space Vs. message passing.
– Communication network characteristics (topology, bandwidth, latency)
– Memory hierarchy properties.

Concurrency = Parallelism

+ Number of processors
(hardware parallelism)

Factors Affecting Parallel System Performance

i.e Inherent
Parallelism

Results in parallelization
overheads/extra work

Slide 29 from Lecture 1 Repeated

Impacts time/cost of
communication

CMPE655 CMPE655 -- ShaabanShaaban
#4 lec # 3 Fall2013 9-10-2013

• Dependency analysis is concerned with detecting the presence and
type of dependency between tasks that prevent tasks from being
independent and from running in parallel on different processors
and can be applied to tasks of any grain size.
– Represented graphically as task dependency graphs.

• Dependencies between tasks can be 1- algorithm/program related or
2- hardware resource/architecture related.

• Algorithm/program Task Dependencies:
– Data Dependence:

• True Data or Flow Dependence
• Name Dependence:

– Anti-dependence
– Output (or write) dependence

– Control Dependence
• Hardware/Architecture Resource Dependence

Dependency Analysis & Conditions of ParallelismConditions of Parallelism

1

2

Down to task = instruction

A task only executes on one processor to which it has been mapped or allocated

*

Task Grain Size:
Amount of computation in
a task

*

Algorithm Related

Algorithm Related

Parallel Program and Programming Model Related

Parallel architecture related

CMPE655 CMPE655 -- ShaabanShaaban
#5 lec # 3 Fall2013 9-10-2013

Conditions of Parallelism: Conditions of Parallelism:
Data & Name DependenceData & Name Dependence

Assume task S2 follows task S1 in sequential program order
1 True Data or Flow Dependence: Task S2 is data dependent on

task S1 if an execution path exists from S1 to S2 and if at least
one output variable of S1 feeds in as an input operand used by S2

Represented by S1 ⎯→ S2 in task dependency graphs

2 Anti-dependence: Task S2 is antidependent on S1, if S2 follows S1
in program order and if the output of S2 overlaps the input of S1

Represented by S1 ⎯→ S2 in dependency graphs

3 Output dependence: Two tasks S1, S2 are output dependent if
they produce the same output variables (or output overlaps)

Represented by S1 ⎯→ S2 in task dependency graphs

S1
..
..

S2
Program
Order

Name
Dependencies

As part of the algorithm/computation

CMPE655 CMPE655 -- ShaabanShaaban
#6 lec # 3 Fall2013 9-10-2013

• Assume task S2 follows task S1 in sequential program order
• Task S1 produces one or more results used by task S2,

– Then task S2 is said to be data dependent on task S1
• Changing the relative execution order of tasks S1, S2 in the parallel program

violates this data dependence and results in incorrect execution.

(True) Data (or Flow) Data (or Flow) Dependence

Task S2 is data dependent on task S1

Task Dependency Graph Representation

S1

S2
Data Dependence

S1
..
..

S2

Program
Order

S1 (Write)

Shared
Operands

S2 (Read)

i.e. Producer

i.e. Consumer

S1 ⎯→ S2

i.e. Data

Data dependencies between tasks originate from the parallel algorithm

CMPE655 CMPE655 -- ShaabanShaaban
#7 lec # 3 Fall2013 9-10-2013

Name Dependence Classification: Classification: Anti-Dependence

Task S2 is anti-dependent on task S1

• Assume task S2 follows task S1 in sequential program order
• Task S1 reads one or more values from one or more names (registers or

memory locations)
• Task S2 writes one or more values to the same names (same registers or

memory locations read by S1)
– Then task S2 is said to be anti-dependent on task S1

• Changing the relative execution order of tasks S1, S2 in the parallel program
violates this name dependence and may result in incorrect execution.

Task Dependency Graph Representation

S1

S2
Anti-dependence

S1
..
..

S2

Program
Order

Name: Register or Memory Location

S1 (Read)

Shared
Names

S2 (Write)

S1 ⎯→ S2

e.g. shared memory locations
in shared address space (SAS)

Does anti-dependence matter for message passing?

Program Related

CMPE655 CMPE655 -- ShaabanShaaban
#8 lec # 3 Fall2013 9-10-2013

Name Dependence Classification: Classification:
Output (or Write) Dependence

Task S2 is output-dependent on task S1

• Assume task S2 follows task S1 in sequential program order
• Both tasks S1, S2 write to the same a name or names (same registers or

memory locations)
– Then task S2 is said to be output-dependent on task S1

• Changing the relative execution order of tasks S1, S2 in the parallel program
violates this name dependence and may result in incorrect execution.

Task Dependency Graph Representation

I

J
Output dependence

Name: Register or Memory Location

S1
..
..

S2

Program
Order

S1 (Write)

Shared
Names

S2 (Write)

S1 ⎯→ S2

e.g. shared memory locations
in shared address space (SAS)

Does output dependence matter for message passing?

Program Related

CMPE655 CMPE655 -- ShaabanShaaban
#9 lec # 3 Fall2013 9-10-2013

Dependency Graph ExampleDependency Graph Example

S1: Load R1, A / R1 ← Memory(A) /
S2: Add R2, R1 / R2 ← R1 + R2 /
S3: Move R1, R3 / R1 ← R3 /
S4: Store B, R1 /Memory(B) ← R1 /

S1

S3

S4S2

Dependency graph

Here assume each instruction is treated as a task:

True Date Dependence:
(S1, S2) (S3, S4)
i.e. S1 ⎯→ S2

S3 ⎯→ S4

Output Dependence:
(S1, S3)
i.e. S1 ⎯→ S3

Anti-dependence:
(S2, S3)
i.e. S2 ⎯→ S3

R1 ← Memory(A)

R2 ← R1 + R2

R1 ← R3

Memory(B) ← R1

CMPE655 CMPE655 -- ShaabanShaaban
#10 lec # 3 Fall2013 9-10-2013

ADD.D F2, F1, F0
ADD.D F4, F2, F3
ADD.D F2, F2, F4
ADD.D F4, F2, F6

1
2
3
4ADD.D F2, F1, F0

1

ADD.D F4, F2, F6

4

Dependency Graph ExampleDependency Graph Example
MIPS Code

Task Dependency graph

Here assume each instruction is treated as a task

ADD.D F4, F2, F3

2
ADD.D F2, F2, F4

3

True Date Dependence:
(1, 2) (1, 3) (2, 3) (3, 4)

i.e. 1 ⎯→ 2 1 ⎯→ 3
2 ⎯→ 3 3 ⎯→ 4

Output Dependence:
(1, 3) (2, 4)

i.e. 1 ⎯→ 3 2 ⎯→ 4

Anti-dependence:
(2, 3) (3, 4)

i.e. 2 ⎯→ 3 3 ⎯→ 4

∅

CMPE655 CMPE655 -- ShaabanShaaban
#11 lec # 3 Fall2013 9-10-2013

L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)

1
2
3
4
5
6

L.D F0, 0 (R1)

1

ADD.D F4, F0, F2

2

S.D F4, 0(R1)

3

ADD.D F4, F0, F2

5
L.D F0, -8 (R1)

4

S.D F4, -8 (R1)

6
Can instruction 4 (second L.D) be moved
just after instruction 1 (first L.D)?
If not what dependencies are violated?

Can instruction 3 (first S.D) be moved
just after instruction 4 (second L.D)?
How about moving 3 after 5 (the second ADD.D)?
If not what dependencies are violated?

Dependency Graph ExampleDependency Graph Example

(From 551)

MIPS Code

Task Dependency graph

Here assume each instruction is treated as a task

True Date Dependence:
(1, 2) (2, 3) (4, 5) (5, 6)
i.e. 1 ⎯→ 2 1 ⎯→ 3

4 ⎯→ 5 5 ⎯→ 6

Output Dependence:
(1, 4) (2, 5)
i.e. 1 ⎯→ 4 2 ⎯→ 5

Anti-dependence:
(2, 4) (3, 5)
i.e. 2 ⎯→ 4 3 ⎯→ 5

CMPE655 CMPE655 -- ShaabanShaaban
#12 lec # 3 Fall2013 9-10-2013

Example Parallel Constructs: Co-begin, Co-end
• A number of generic parallel constructs can be used to specify or represent

parallelism in parallel computations or code including (Co-begin, Co-end).
• Statements or tasks can be run in parallel if they are declared in same block

of (Co-begin, Co-end) pair.
• Example: Given the the following task dependency graph of a computation

with eight tasks T1-T8:

T1 T2

T3

T4

T5 T6

T8

T7

Parallel code using Co-begin, Co-end:

Co-Begin
T1, T2

Co-End
T3
T4
Co-Begin

T5, T6, T7
Co-End
T8

Possible Sequential
Code Order:

T1
T2
T3
T4
T5,
T6,
T7
T8

Task Dependency Graph

CMPE655 CMPE655 -- ShaabanShaaban
#13 lec # 3 Fall2013 9-10-2013

Conditions of ParallelismConditions of Parallelism
• Control Dependence:

– Order of execution cannot be determined before runtime
due to conditional statements.

• Resource Dependence:
– Concerned with conflicts in using shared resources among

parallel tasks, including:
• Functional units (integer, floating point), memory areas,

communication links etc.
• Bernstein’s Conditions of Parallelism:

Two processes P1 , P2 with input sets I1, I2 and output sets
O1, O2 can execute in parallel (denoted by P1 || P2) if:

I1 ∩ O2 = ∅
I2 ∩ O1 = ∅
O1 ∩ O2 = ∅ i.e no output dependence

i.e no flow (data) dependence
or anti-dependence
(which is which?)

Order of P1 , P2 ?

i.e. Results
produced

CMPE655 CMPE655 -- ShaabanShaaban
#14 lec # 3 Fall2013 9-10-2013

BernsteinBernstein’’s Conditions: An Examples Conditions: An Example
• For the following instructions P1, P2, P3, P4, P5 :

– Each instruction requires one step to execute
– Two adders are available

P1 : C = D x E
P2 : M = G + C
P3 : A = B + C
P4 : C = L + M
P5 : F = G ÷ E

Using Bernstein’s Conditions after checking statement pairs:
P1 || P5 , P2 || P3 , P2 || P5 , P3 || P5 , P4 || P5

X P1

D E

+3 P4

+2 P3+1 P2

C

BG

L ÷ P5

G E

FAC

X P1

D E

+1 P2

+3 P4

÷ P5

G

B

F

C

+2 P3

AL

E G
C

M

Parallel execution in three steps
assuming two adders are available
per step

Sequential
execution

Time

X
P1

÷
P5

+2

+3+1

P2 P4

P3
Dependence graph:
Data dependence (solid lines)
Resource dependence (dashed lines)

P1
Co-Begin

P1, P3, P5
Co-End
P4

CMPE655 CMPE655 -- ShaabanShaaban
#15 lec # 3 Fall2013 9-10-2013

Asymptotic Notations for Algorithm AnalysisAsymptotic Notations for Algorithm Analysis
• Asymptotic analysis of computing time (computational) complexity of

an algorithm T(n)= f(n) ignores constant execution factors and
concentrates on:
– Determining the order of magnitude of algorithm performance.
– How quickly does the running time (computational complexity) grow as a

function of the input size.
• We can compare algorithms based on their asymptotic behavior and

select the one with lowest rate of growth of complexity in terms of input
size or problem size n independent of the computer hardware.

♦ Upper bound: Order Notation (Big Oh)
Used in worst case analysis of algorithm performance.

f(n) = O(g(n))
iff there exist two positive constants c and n0 such that

| f(n) | ≤ c | g(n) | for all n > n0

⇒ i.e. g(n) is an upper bound on f(n)

O(1) < O(log n) < O(n) < O(n log n) < O (n2) < O(n3) < O(2n)

i.e Notations for computational complexity of algorithms
+ rate of growth of functions

< O(n!)

Rate of growth of computational function

O()

CMPE655 CMPE655 -- ShaabanShaaban
#16 lec # 3 Fall2013 9-10-2013

Asymptotic Notations for Algorithm AnalysisAsymptotic Notations for Algorithm Analysis
♦ Asymptotic Lower bound: Big Omega Notation

Used in the analysis of the lower limit of algorithm performance

f(n) = Ω(g(n))

if there exist positive constants c, n0 such that

| f(n) | ≥ c | g(n) | for all n > n0

⇒ i.e. g(n) is a lower bound on f(n)

♦ Asymptotic Tight bound: Big Theta Notation
Used in finding a tight limit on algorithm performance

f(n) = Θ (g(n))

if there exist constant positive integers c1, c2, and n0 such that

c1 | g(n) | ≤ | f(n) | ≤ c2 | g(n) | for all n > n0

⇒ i.e. g(n) is both an upper and lower bound on f(n)

AKA Tight bound

Ω()

Θ ()

CMPE655 CMPE655 -- ShaabanShaaban
#17 lec # 3 Fall2013 9-10-2013

Graphs of O, Ω, Θ

f(n) =O(g(n))
Upper Bound

cg(n)

f(n)

n0

f(n) = Ω(g(n))
Lower Bound

cg(n)

n0

f(n)

f(n) = Θ(g(n))
Tight bound

c2g(n)

n0

c1g(n)

f(n)

CMPE655 CMPE655 -- ShaabanShaaban
#18 lec # 3 Fall2013 9-10-2013

Rate of Growth of Common Computing Time FunctionsRate of Growth of Common Computing Time Functions

log2 n n n log2 n n2 n3 2n n!

0 1 0 1 1 2 1
1 2 2 4 8 4 2
2 4 8 16 64 16 24
3 8 24 64 512 256 40320
4 16 64 256 4096 65536 20922789888000
5 32 160 1024 32768 4294967296 2.6 x 1035

e.g NP-Complete/Hard Algorithms
(NP – Non Polynomial)

O(1) < O(log n) < O(n) < O(n log n) < O (n2) < O(n3) < O(2n) < O(n!)

Or other metric or quantity such as
memory requirement, communication etc ..

NP = Non-Polynomial

CMPE655 CMPE655 -- ShaabanShaaban
#19 lec # 3 Fall2013 9-10-2013

)log(n

n

2n)log(nn
n2

Rate of Growth of Common Computing Time Rate of Growth of Common Computing Time
FunctionsFunctions

O(1) < O(log n) < O(n) < O(n log n) < O (n2) < O(n3) < O(2n)

CMPE655 CMPE655 -- ShaabanShaaban
#20 lec # 3 Fall2013 9-10-2013

Theoretical Models of Parallel Computers:Theoretical Models of Parallel Computers:

• Parallel Random-Access Machine (PRAM):
– p processor, global shared memory model.
– Models idealized parallel shared-memory computers with zero

synchronization, communication or memory access overhead.
– Utilized in parallel algorithm development and scalability and

complexity analysis.
• PRAM variants: More realistic models than pure PRAM

– EREW-PRAM: Simultaneous memory reads or writes to/from
the same memory location are not allowed.

– CREW-PRAM: Simultaneous memory writes to the same
location is not allowed. (Better to model SAS MIMD?)

– ERCW-PRAM: Simultaneous reads from the same memory
location are not allowed.

– CRCW-PRAM: Concurrent reads or writes to/from the same
memory location are allowed.

Sometimes used to model SIMD since no memory is shared

Why?

PRAM: An Idealized Shared-Memory Parallel Computer Model

CMPE655 CMPE655 -- ShaabanShaaban
#21 lec # 3 Fall2013 9-10-2013

Example: sum algorithm on P processor PRAMExample: sum algorithm on P processor PRAM

•Input: Array A of size n = 2k

in shared memory
•Initialized local variables:

•the order n,
•number of processors p = 2q ≤ n,
• the processor number s

•Output: The sum of the elements
of A stored in shared memory

begin
1. for j = 1 to l (= n/p) do

Set B(l(s - 1) + j): = A(l(s-1) + j)
2. for h = 1 to log2 p do

2.1 if (k- h - q ≥ 0) then
for j = 2k-h-q(s-1) + 1 to 2k-h-qS do

Set B(j): = B(2j -1) + B(2s)
2.2 else {if (s ≤ 2k-h) then

Set B(s): = B(2s -1) + B(2s)}
3. if (s = 1) then set S: = B(1)
end

Running time analysis:
• Step 1: takes O(n/p) each processor executes n/p operations
•The hth of step 2 takes O(n / (2hp)) since each processor has
to perform (n / (2hp)) ¬ operations

• Step three takes O(1)
•Total running time:)log()(

log

1 2
p

p
nO

p
n

p
nOn

p

h
hpT +=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

=

Add n numbers

Compute p partial Sums

n >>p

p partial sums
O(n/p)

B
inary tree com

putation O
 (log

2 p)

Sequential Time T1(n) = O(n)

CMPE655 CMPE655 -- ShaabanShaaban
#22 lec # 3 Fall2013 9-10-2013

Example: Sum Algorithm on P Processor PRAMExample: Sum Algorithm on P Processor PRAM

Operation represented by a node
is executed by the processor
indicated below the node.

B(6)
=A(6)

P3

B(5)
=A(5)

P3

P3

B(3)

B(8)
=A(8)

P4

B(7)
=A(7)

P4

P4

B(4)

B(2)
=A(2)

P1

B(1)
=A(1)

P1

P1

B(1)

B(4)
=A(4)

P2

B(3)
=A(3)

P2

P2

B(2)

B(2)

P2

B(1)

P1

B(1)

P1

S= B(1)

P1

For n = 8 p = 4 = n/2
Processor allocation for
computing the sum of 8 elements
on 4 processor PRAM

5

4

3

2

1

Time
Unit

+ + + +

+ +

+

T = 2 + log2(8) = 2 + 3 = 5

T = O(log2n)
Cost = O(n log2n)

For n >> p O(n/p + Log2 p)

Assume p = O(n)

CMPE655 CMPE655 -- ShaabanShaaban
#23 lec # 3 Fall2013 9-10-2013

Performance of Parallel AlgorithmsPerformance of Parallel Algorithms
• Performance of a parallel algorithm is typically measured

in terms of worst-case analysis.
• For problem Q with a PRAM algorithm that runs in time

T(n) using P(n) processors, for an instance size of n:
– The time-processor product C(n) = T(n) . P(n) represents the

cost of the parallel algorithm.
– For P < P(n), each of the of the T(n) parallel steps is

simulated in O(P(n)/p) substeps. Total simulation takes
O(T(n)P(n)/p)

– The following four measures of performance are
asymptotically equivalent:

• P(n) processors and T(n) time
• C(n) = P(n)T(n) cost and T(n) time
• O(T(n)P(n)/p) time for any number of processors p < P(n)
• O(C(n)/p + T(n)) time for any number of processors.

i.e using order notation O()

Illustrated next with an example

Cost of
a parallel
algorithm

= O(C(n)/p)

CMPE655 CMPE655 -- ShaabanShaaban
#24 lec # 3 Fall2013 9-10-2013

Matrix Multiplication On PRAM
• Multiply matrices A x B = C of sizes n x n
• Sequential Matrix multiplication:

For i=1 to n {
For j=1 to n { }}

Thus sequential matrix multiplication time complexity O(n3)
• Matrix multiplication on PRAM with p = O(n3) processors.

– Compute in parallel for all i, j, t = 1 to n
c(i,j,t) = a(i, t) x b(t, j) O(1)

– Compute in parallel for all i;j = 1 to n:

Thus time complexity of matrix multiplication on PRAM with n3

processors = O(log2n) Cost(n) = O(n3 log2n)
– Time complexity of matrix multiplication on PRAM with n2 processors = O(nlog2n)
– Time complexity of matrix multiplication on PRAM with n processors = O(n2log2n)

∑
=

×=
n

t

jtbtiajiC
1

),(),(),(

∑
=

=
n

t

tjicjiC
1

),,(),(

Dot product O(n)
sequentially on one
processor

All product terms computed in parallel
in one time step using n3 processors

O(log2n) All dot products computed in parallel
Each taking O(log2n)

From last slide: O(C(n)/p + T(n)) time complexity for any number of processors.

PRAM Speedup:
= n3 / log2 n

CMPE655 CMPE655 -- ShaabanShaaban
#25 lec # 3 Fall2013 9-10-2013

The Power of The PRAM ModelThe Power of The PRAM Model
• Well-developed techniques and algorithms to handle many

computational problems exist for the PRAM model.

• Removes algorithmic details regarding synchronization and
communication cost, concentrating on the structural and
fundamental data dependency properties (dependency graph) of the
parallel computation/algorithm.

• Captures several important parameters of parallel computations.
Operations performed in unit time, as well as processor allocation.

• The PRAM design paradigms are robust and many parallel
network (message-passing) algorithms can be directly derived
from PRAM algorithms.

• It is possible to incorporate synchronization and communication
costs into the shared-memory PRAM model.

CMPE655 CMPE655 -- ShaabanShaaban
#26 lec # 3 Fall2013 9-10-2013

Network Model of MessageNetwork Model of Message--Passing MulticomputersPassing Multicomputers
• A network of processors can viewed as a graph G (N,E)

– Each node i ∈ N represents a processor
– Each edge (i,j) ∈ E represents a two-way communication

link between processors i and j.
– Each processor is assumed to have its own local memory.
– No shared memory is available.
– Operation is synchronous or asynchronous (using message

passing).
– Basic message-passing communication primitives:

• send(X,i) a copy of data X is sent to processor Pi, execution
continues.

• receive(Y, j) execution of recipient processor is suspended
(blocked or waits) until the data from processor Pj is received
and stored in Y then execution resumes.

e.g Point-to-point interconnect

Graph represents network topology

i.e Blocking Receive

Send (X, i) Receive (Y, j)

Data Dependency
/Ordering

Blocking
Receive

CMPE655 CMPE655 -- ShaabanShaaban
#27 lec # 3 Fall2013 9-10-2013

Network Model of MulticomputersNetwork Model of Multicomputers
• Routing is concerned with delivering each message from

source to destination over the network.
• Additional important network topology parameters:

– The network diameter is the maximum distance between
any pair of nodes (in links or hops).

– The maximum degree of any node in G
• Directly connected to how many other nodes

• Example:
– Linear array: P processors P1, …, Pp are connected in

a linear array where:
• Processor Pi is connected to Pi-1 and Pi+1 if they exist.
• Diameter is p-1; maximum degree is 2 (1 or 2).

– A ring is a linear array of processors where processors P1
and Pp are directly connected. Degree = 2, Diameter = p/2

P1 P2 P3 Pp

i.e length of longest route between any two nodes

Path or route message takes in network

CMPE655 CMPE655 -- ShaabanShaaban
#28 lec # 3 Fall2013 9-10-2013

A FourA Four--Dimensional (4D) HypercubeDimensional (4D) Hypercube
• In a d-dimensional binary hypercube, each of the N = 2d nodes is

assigned a d-bit address.
• Two processors are connected if their binary addresses differ in one

bit position.
• Degree = Diameter = d = log2 N

Here: d = Degree = Diameter = 4
Number of nodes = N = 2d = 24 = 16 nodes

Binary tree computations
map directly to the hypercube
topology

Example Network Topology:

Example d=4

Dimension order routing example node 0000 to 1111:
0000 ⎯→ 0001 ⎯→ 0011 ⎯→ 0111 ⎯→ 1111 (4 hops)1 2 3 4

Connectivity

here d = 4

CMPE655 CMPE655 -- ShaabanShaaban
#29 lec # 3 Fall2013 9-10-2013

Example: Message-Passing Matrix Vector Product on a Ring
• Input:

– n x n matrix A ; vector x of order n
– The processor number i. The number of processors
– The ith submatrix B = A(1:n, (i-1)r +1 ; ir) of size n x r where r = n/p
– The ith subvector w = x(i - 1)r + 1 : ir) of size r

• Output:
– Processor Pi computes the vector y = A1x1 + …. Aixi and passes the result

to the right
– Upon completion P1 will hold the product Ax

Begin
1. Compute the matrix vector product z = Bw
2. If i = 1 then set y: = 0

else receive(y,left)
3. Set y: = y +z
4. send(y, right)
5. if i =1 then receive(y,left)

End

Tcomp = k(n2/p)
Tcomm = p(l+ mn)
T = Tcomp + Tcomm

= k(n2/p) + p(l+ mn)

k, l, m constants

Y = Ax

For all processors, O(n2/p)

Sequential time complexity of Y = Ax : O(n2)

n >> p
n multiple of p

Tcomp

Tcomm

Comp = Computation

Comm = Communication

Sequentially = O(n2)

O(np)

CMPE655 CMPE655 -- ShaabanShaaban
#30 lec # 3 Fall2013 9-10-2013

Matrix Vector Product y = Ax on a Ring

• For each processor i compute in parallel
Zi = Bi wi O(n2/p)

• For processor #1: set y =0, y = y + Zi, send y to right processor
• For every processor except #1

Receive y from left processor, y = y + Zi, send y to right processor
• For processor 1 receive final result from left processor p

• T = O(n2/p + pn)

=

n n

n

n

1

n

A(n, n) vector x(n, 1)

y(n, 1)

X

Submatrix Bi of size n x n/p Subvector Wi of size (n/p,1)

(n,1) Zi = Bi wi
Y = Ax = Z1 + Z2 + … Zp = B1 w1 + B2 w2 + … Bp wp

1
2

3

p

P-1

….

Final Result

Communication
O(pn)

Computation Communication

Compute in parallel

Communication-to-Computation Ratio =
= pn / (n2/p) = p2/n

Computation: O(n2/p)

n/pn/p

p processors

CMPE655 CMPE655 -- ShaabanShaaban
#31 lec # 3 Fall2013 9-10-2013

Creating a Parallel ProgramCreating a Parallel Program
• Assumption: Sequential algorithm to solve problem is given

– Or a different algorithm with more inherent parallelism is devised.
– Most programming problems have several parallel solutions or

algorithms. The best solution may differ from that suggested by
existing sequential algorithms.

One must:
– Identify work that can be done in parallel (dependency analysis)
– Partition work and perhaps data among processes (Tasks)
– Manage data access, communication and synchronization
– Note: work includes computation, data access and I/O

Main goal: Maximize Speedup

Speedup (p) =

For a fixed size problem:
Speedup (p) =

Performance(p)
Performance(1)

Time(1)
Time(p)

By:
1- Minimizing parallelization overheads
2- Balancing workload on processors

Time (p) = Max (Work + Synch Wait Time + Comm Cost + Extra Work)

The processor with max. execution time
determines parallel execution time

Computational Problem Parallel Algorithm Parallel Program

of parallel processing

Determines size and
number of tasks

CMPE655 CMPE655 -- ShaabanShaaban
#32 lec # 3 Fall2013 9-10-2013

Hardware Vs. Software ParallelismHardware Vs. Software Parallelism
• Hardware parallelism:

– Defined by machine architecture, hardware multiplicity
(number of processors available) and connectivity.

– Often a function of cost/performance tradeoffs.
– Characterized in a single processor by the number of

instructions k issued in a single cycle (k-issue processor).
– A multiprocessor system with n k-issue processor can handle a

maximum limit of nk parallel instructions (at ILP level) or n
parallel threads at thread-level parallelism (TLP) level.

• Software parallelism:
– Defined by the control and data dependence of programs.
– Revealed in program profiling or program dependency (data

flow) graph.
– A function of algorithm, parallel task grain size, programming

style and compiler optimization.

e.g Number of processors

e.g Degree of Software Parallelism (DOP) or number of parallel tasks at
selected task or grain size at a given time in the parallel computation

i.e hardware-supported
threads of execution

At Thread Level
Parallelism (TLP)

i.e. number of parallel tasks at a given time

Hardware
DOP

Software
DOP

DOP = Degree of Parallelism

CMPE655 CMPE655 -- ShaabanShaaban
#33 lec # 3 Fall2013 9-10-2013

Levels of Software Parallelism in Program ExecutionLevels of Software Parallelism in Program Execution

Jobs or programs
(Multiprogramming)Level 5

Subprograms, job
steps or related parts

of a program
Level 4

Procedures, subroutines,
or co-routines

Level 3

Non-recursive loops or
unfolded iterationsLevel 2

Instructions or
statementsLevel 1

Increasing
communications
demand and
mapping/scheduling
overheads

Higher
C-to-C
Ratio

Higher
Degree of
Software
Parallelism
(DOP)

Medium
Grain

Coarse
Grain

Fine
Grain

Task size affects Communication-to-Computation ratio
(C-to-C ratio) and communication overheads

According to task (grain) size

Instruction
Level Parallelism (ILP)

Thread Level Parallelism
(TLP)

i.e multi-tasking

More
Smaller
Tasks

CMPE655 CMPE655 -- ShaabanShaaban
#34 lec # 3 Fall2013 9-10-2013

Computational Parallelism and Grain SizeComputational Parallelism and Grain Size
• Task grain size (granularity) is a measure of the amount of

computation involved in a task in parallel computation:
– Instruction Level (Fine Grain Parallelism):

• At instruction or statement level.
• 20 instructions grain size or less.
• For scientific applications, parallelism at this level range from

500 to 3000 concurrent statements
• Manual parallelism detection is difficult but assisted by

parallelizing compilers.
– Loop level (Fine Grain Parallelism):

• Iterative loop operations.
• Typically, 500 instructions or less per iteration.
• Optimized on vector parallel computers.
• Independent successive loop operations can be vectorized or run

in SIMD mode.

CMPE655 CMPE655 -- ShaabanShaaban
#35 lec # 3 Fall2013 9-10-2013

Computational Parallelism and Grain SizeComputational Parallelism and Grain Size
– Procedure level (Medium Grain Parallelism): :

• Procedure, subroutine levels.
• Less than 2000 instructions.
• More difficult detection of parallel than finer-grain levels.
• Less communication requirements than fine-grain

parallelism.
• Relies heavily on effective operating system support.

– Subprogram level (Coarse Grain Parallelism): :
• Job and subprogram level.
• Thousands of instructions per grain.
• Often scheduled on message-passing multicomputers.

– Job (program) level, or Multiprogrammimg:
• Independent programs executed on a parallel computer.
• Grain size in tens of thousands of instructions.

CMPE655 CMPE655 -- ShaabanShaaban
#36 lec # 3 Fall2013 9-10-2013

Software Parallelism Types: Software Parallelism Types: DataData Vs. Vs. Functional ParallelismFunctional Parallelism
1 - Data Parallelism:

– Parallel (often similar) computations performed on elements of large data structures
• (e.g numeric solution of linear systems, pixel-level image processing)

– Such as resulting from parallelization of loops.
– Usually easy to load balance.
– Degree of concurrency usually increases with input or problem size. e.g O(n2) in

equation solver example (next slide).
2- Functional Parallelism:
• Entire large tasks (procedures) with possibly different functionality that can be done in

parallel on the same or different data.
– Software Pipelining: Different functions or software stages of the pipeline

performed on different data:
• As in video encoding/decoding, or polygon rendering.

• Concurrency degree usually modest and does not grow with input size (i.e. problem size)
– Difficult to load balance.
– Often used to reduce synch wait time between data parallel phases.

Most scalable parallel computations/programs:
(more concurrency as problem size increases) parallel programs:

Data parallel computations/programs (per this loose definition)
– Functional parallelism can still be exploited to reduce synchronization wait time

between data parallel phases.

Actually covered in PCA 3.1.1 page 124 Concurrency = Parallelism

i.e max
DOP

CMPE655 CMPE655 -- ShaabanShaaban
#37 lec # 3 Fall2013 9-10-2013

Example Motivating Problem: Example Motivating Problem:
Simulating Ocean Currents/Heat Transfer ...Simulating Ocean Currents/Heat Transfer ...

– Model as two-dimensional nxn grids
– Discretize in space and time

• finer spatial and temporal resolution => greater accuracy
– Many different computations per time step

• set up and solve equations iteratively (Gauss-Seidel) .
– Concurrency across and within grid computations per iteration

• n2 parallel computations per grid x number of grids

(a) Cross sections (b) Spatial discretization of a cross section

n

n
Maximum Degree of
Parallelism (DOP) or
concurrency: O(n2)
data parallel
computations per 2D
grid per iteration

A[i,j] = 0.2 × (A[i,j] + A[i,j – 1] + A[i – 1, j] +
A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

2D Grid

Covered next lecture (PCA 2.3)

n
grids

Total
O(n3)
Computations
Per iteration

O(n2) per grid

When one task updates/computes one grid element

n x n

With High Degree of Data Parallelism

CMPE655 CMPE655 -- ShaabanShaaban
#38 lec # 3 Fall2013 9-10-2013

Limited Concurrency: AmdahlLimited Concurrency: Amdahl’’s Laws Law
– Most fundamental limitation on parallel speedup.
– Assume a fraction s of sequential execution time runs on a single

processor and cannot be parallelized.
– Assuming that the problem size remains fixed and that the remaining

fraction (1-s) can be parallelized without any parallelization overheads
to run on p processors and thus reduced by a factor of p.

– The resulting speedup for p processors:

Sequential Execution Time
Speedup(p) = --

Parallel Execution Time

Parallel Execution Time = (S + (1-S)/P) X Sequential Execution Time

Sequential Execution Time 1
Speedup(p) = --- = --------------------

(s + (1-s)/p) X Sequential Execution Time s + (1-s)/p

– Thus for a fixed problem size, if fraction s of sequential execution is
inherently serial, speedup ≤ 1/s

i.e. perfect speedup
for parallelizable portion

i.e sequential or serial portion of the computation

T(1)

T(p)

T(p) T(1)

Fixed problem size speedup

DOP=1

DOP=p

i.e. two degrees of
parallelism: 1 or p

Limit on Speedup

+ Parallelization
Overheads ?

CMPE655 CMPE655 -- ShaabanShaaban
#39 lec # 3 Fall2013 9-10-2013

AmdahlAmdahl’’s Law Examples Law Example
• Example: 2-Phase n-by-n Grid Computation

– Sweep over n-by-n grid and do some independent computation
– Sweep again and add each value to global sum sequentially
– Time for first phase = n2/p
– Second phase serialized at global variable, so time = n2

– Speedup <= = or at most 1/s = 1/.5= 2

– Possible Trick: divide second “sequential” phase into two:
• Accumulate into private sum during sweep
• Add per-process private sum into global sum

– Total parallel time is n2/p + n2/p + p, and speedup:

2n2

n2

p + n2

2n2

2n2/p + p

1
0.5
p + 0.5

P = number of processors

Sequential time = Time Phase1 + Time Phase2 = n2 + n2 = 2n2

Phase1 (parallel) Phase2 (sequential)

1
1/p + p/2n2

= For large n
Speedup ~ p

Phase 1

Phase 2

e.g data parallel DOP = O(n2)

Time = n2/p

Time = p

Here s = 0.5

1

2

1

2

T(1)
T(p) =

Max. speedup

Speedup =

Parallel

Sequential

CMPE655 CMPE655 -- ShaabanShaaban
#40 lec # 3 Fall2013 9-10-2013

AmdahlAmdahl’’s Law Example: s Law Example:
2-Phase n-by-n Grid Computation

A Pictorial DepictionA Pictorial Depiction

1

p

1

p

1

n2/p

n2

p

w
or

k
do

ne
 c

on
cu

rr
en

tly

n2

n2

Time
n2/p n2/p

(c)

(b)

(a)

Phase 1 Phase 2 Sequential
Execution

Parallel Execution
on p processors
Phase 1: time reduced by p
Phase 2: sequential

Parallel Execution
on p processors
Phase 1: time reduced by p
Phase 2: divided into two steps

(see previous slide)

1
0.5
p + 0.5

Speedup=

2n2

2n2 + p2
Speedup=

Maximum Possible Speedup = 2s= 0.5

1
1/p + p/2n2

=

For large n
Speedup ~ p

CMPE655 CMPE655 -- ShaabanShaaban
#41 lec # 3 Fall2013 9-10-2013

Parallel Performance MetricsParallel Performance Metrics
Degree of Parallelism (DOP)Degree of Parallelism (DOP)

• For a given time period, DOP reflects the number of processors in
a specific parallel computer actually executing a particular parallel
program.

• Average Degree of Parallelism A:
– given maximum parallelism = m
– n homogeneous processors
– computing capacity of a single processor ∆
– Total amount of work W (instructions, computations):

or as a discrete summation W i i
i

m

t=
=

∑∆ .
1

W DOP t dt
t

t

= ∫∆ ()
1

2

A DOP t dtt t t

t

=
− ∫
1

2 1 1

2

() A i i
i

m

i
i

m

t t=
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

= =
∑ ∑.

1 1

i
i

m

t t t
=
∑ = −

1
2 1Where ti is the total time that DOP = i and

The average parallelism A:

In discrete form

Computations/sec

DOP Area

Parallel
Execution
Time

i.e DOP at a given time = Min (Software Parallelism, Hardware Parallelism)

i.e A = Total Work / Total Time = W / T

CMPE655 CMPE655 -- ShaabanShaaban
#42 lec # 3 Fall2013 9-10-2013

Example: Concurrency Profile of Example: Concurrency Profile of
A DivideA Divide--andand--Conquer AlgorithmConquer Algorithm

• Execution observed from t1 = 2 to t2 = 27
• Peak parallelism (i.e. peak DOP) m = 8
• A = (1x5 + 2x3 + 3x4 + 4x6 + 5x2 + 6x2 + 8x3) / (5 + 3+4+6+2+2+3)

= 93/25 = 3.72

Degree of Parallelism (DOP)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

11
10
9
8
7
6
5
4
3
2
1

Timet1 t2

A i i
i

m

i
i

m

t t=
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

= =
∑ ∑.

1 1

Area equal to total # of
computations or work, W

Concurrency Profile

Average
Parallelism

Ignoring parallelization overheads, what is the speedup?

(i.e total work on parallel processors equal to work on single processor)

Concurrency = Parallelism

Average parallelism = 3.72

Work
Time

=

Speedup?

A = Total Work / Total Time = W / T

Observed

CMPE655 CMPE655 -- ShaabanShaaban
#43 lec # 3 Fall2013 9-10-2013

Concurrency Profile & SpeedupConcurrency Profile & Speedup

– Area under curve is total work done, or time with 1 processor
– Horizontal extent is lower bound on time (infinite processors)

–Speedup is the ratio: , base case:

k = degree of parallelism fk = Total time with degree of parallelism k

– Amdahl’s law applies to any overhead, not just limited concurrency.

For a parallel program DOP may range from 1 (serial) to a maximum m

C
on

cu
rr

en
cy

15
0

21
9

24
7

28
6

31
3

34
3

38
0

41
5

44
4

48
3

50
4

52
6

56
4

58
9

63
3

66
2

70
2

73
3

0

200

400

600

800

1,000

1,200

1,400

Clock cycle number

fk k

fk
k
p∑

k=1

∞

∑k=1

∞
1

s + 1-s
p(for p processors)

Concurrency Profile

Ignoring parallelization overheads

Ignoring parallelization overheads

CMPE655 CMPE655 -- ShaabanShaaban
#44 lec # 3 Fall2013 9-10-2013

• Assume different fractions of sequential execution time of a problem running on a
single processor have different degrees of parallelism (DOPs) and that the problem
size remains fixed.

– Fraction Fi of the sequential execution time can be parallelized without any
parallelization overheads to run on Si processors and thus reduced by a factor of
Si.

– The remaining fraction of sequential execution time cannot be parallelized and
runs on a single processor.

• Then

Amdahl's Law with Multiple Degrees of ParallelismAmdahl's Law with Multiple Degrees of Parallelism

∑ ∑+−
=

i i
i

i
i X

S
FF

Speedup
Time Execution Original)1

Time Execution Original

)((

∑ ∑+−
=

i i
i

i
i S

FF
Speedup

)()1

1

(
Note: All fractions Fi refer to original sequential execution time on

one processor.
How to account for parallelization overheads in above speedup?

+ overheads?

Sequential Fraction (DOP=1)

Sequential Fraction (DOP=1)

T(1)
T(p) =

Fixed problem
size speedup

T(1)

T(1)

i.e. Sequential Execution Time

CMPE655 CMPE655 -- ShaabanShaaban
#45 lec # 3 Fall2013 9-10-2013

Amdahl's Law with Multiple Degrees of Parallelism : Amdahl's Law with Multiple Degrees of Parallelism :
ExampleExample

• Given the following degrees of parallelism in a program or computation

DOP1 = S1 = 10 Percentage1 = F1 = 20%
DOP2 = S2 = 15 Percentage1 = F2 = 15%
DOP3 = S3 = 30 Percentage1 = F3 = 10%
DOP4 = S4 = 1 Percentage1 = F4 = 55%

• What is the parallel speedup when running on a parallel system without any
parallelization overheads ?

• Speedup = 1 / [(1 - .2 - .15 - .1) + .2/10 + .15/15 + .1/30)]
= 1 / [.55 + .0333]
= 1 / .5833 = 1.71

∑ ∑+−
=

i i
i

i
i S

FF
Speedup

)()1

1

(

From 551

i.e on 10 processors

Maximum Speedup = 1/0.55 = 1.81 (limited by sequential portion)

Sequential Portion

Sequential Portion

CMPE655 CMPE655 -- ShaabanShaaban
#46 lec # 3 Fall2013 9-10-2013

Pictorial Depiction of ExamplePictorial Depiction of Example
Before:
Original Sequential Execution Time:

After:
Parallel Execution Time: .55 + .02 + .01 + .00333 = .5833

Parallel Speedup = 1 / .5833 = 1.71

Note: All fractions (Fi , i = 1, 2, 3) refer to original sequential execution time.

Sequential fraction: .55

Unchanged

Sequential fraction: .55 F1 = .2 F2 = .15 F3 = .1

S1 = 10 S2 = 15 S3 = 30

/ 10 / 30/ 15

From 551

Maximum possible
speedup = 1/.55 = 1.81

Limited
by sequential
portion

What about parallelization overheads?

CMPE655 CMPE655 -- ShaabanShaaban
#47 lec # 3 Fall2013 9-10-2013

Parallel Performance ExampleParallel Performance Example
• The execution time T for three parallel programs is given in terms of processor

count P and problem size N
• In each case, we assume that the total computation work performed by

an optimal sequential algorithm scales as N+N2 .
1 For first parallel algorithm: T = N + N2/P

This algorithm partitions the computationally demanding O(N2) component of
the algorithm but replicates the O(N) component on every processor. There
are no other sources of overhead.

2 For the second parallel algorithm: T = (N+N2)/P + 100
This algorithm optimally divides all the computation among all processors but
introduces an additional cost of 100.

3 For the third parallel algorithm: T = (N+N2)/P + 0.6P2

This algorithm also partitions all the computation optimally but introduces
an additional cost of 0.6P2.

• All three algorithms achieve a speedup of about 10.8 when P = 12 and N=100 . However,
they behave differently in other situations as shown next.

• With N=100 , all three algorithms perform poorly for larger P , although Algorithm (3)
does noticeably worse than the other two.

• When N=1000 , Algorithm (2) is much better than Algorithm (1) for larger P .

(or three parallel algorithms for a problem)

N = Problem Size P = Number of Processors

CMPE655 CMPE655 -- ShaabanShaaban
#48 lec # 3 Fall2013 9-10-2013

Parallel Parallel
Performance Performance

Example Example
(continued)(continued)

All algorithms achieve:
Speedup = 10.8 when P = 12 and N=100

N=1000 , Algorithm (2) performs
much better than Algorithm (1)
for larger P .

Algorithm 1: T = N + N2/P
Algorithm 2: T = (N+N2)/P + 100
Algorithm 3: T = (N+N2)/P + 0.6P2

Algorithm 3

Algorithm 3

Algorithm 1

Algorithm 2

Algorithm 2

N= Problem Size
P = Number of processors

CMPE655 CMPE655 -- ShaabanShaaban
#49 lec # 3 Fall2013 9-10-2013

Creating a Parallel ProgramCreating a Parallel Program
• Assumption: Sequential algorithm to solve problem is given

– Or a different algorithm with more inherent parallelism is devised.
– Most programming problems have several parallel solutions or

algorithms. The best solution may differ from that suggested by
existing sequential algorithms.

One must:
– Identify work that can be done in parallel (dependency analysis)
– Partition work and perhaps data among processes (Tasks)
– Manage data access, communication and synchronization
– Note: work includes computation, data access and I/O

Main goal: Maximize Speedup

Speedup (p) =

For a fixed size problem:
Speedup (p) =

Performance(p)
Performance(1)

Time(1)
Time(p)

By:
1- Minimizing parallelization overheads
2- Balancing workload on processors

Time (p) = Max (Work + Synch Wait Time + Comm Cost + Extra Work)

The processor with max. execution time
determines parallel execution time

Computational Problem Parallel Algorithm Parallel Program

of parallel processing

Determines size and
number of tasks

Slide 31
Repeated

CMPE655 CMPE655 -- ShaabanShaaban
#50 lec # 3 Fall2013 9-10-2013

Steps in Creating a Parallel ProgramSteps in Creating a Parallel Program

4 steps:
1- Decomposition, 2- Assignment, 3- Orchestration, 4- Mapping

– Done by programmer or system software (compiler,
runtime, ...)

– Issues are the same, so assume programmer does it all
explicitly

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

+ Scheduling

Parallel Algorithm

Find max. degree of
Parallelism (DOP)
or concurrency
(Dependency analysis/
graph) Max. no of Tasks

Processes

Tasks

How many tasks?
Task (grain) size?

Computational
Problem

Communication
Abstraction

Tasks → Processes
Processes → Processors

+ Execution Order
(scheduling)

Fine-grain Parallel
Computations

→ Tasks

Fine-grain Parallel
Computations

Max DOP

Computational Problem Parallel Algorithm Parallel Program

Vs. implicitly by parallelizing compiler

At or above

CMPE655 CMPE655 -- ShaabanShaaban
#51 lec # 3 Fall2013 9-10-2013

Partitioning: Decomposition & AssignmentPartitioning: Decomposition & Assignment

• Break up computation into maximum number of small concurrent
computations that can be combined into fewer/larger tasks in assignment step:

– Tasks may become available dynamically.
– No. of available tasks may vary with time.
– Together with assignment, also called partitioning.

i.e. identify concurrency (dependency analysis) and decide level at
which to exploit it.

• Grain-size problem:
– To determine the number and size of grains or tasks in a parallel program.
– Problem and machine-dependent.
– Solutions involve tradeoffs between parallelism, communication and

scheduling/synchronization overheads.
• Grain packing:

– To combine multiple fine-grain nodes (parallel computations) into a coarse grain
node (task) to reduce communication delays and overall scheduling overhead.

Goal: Enough tasks to keep processors busy, but not too many (too much overheads)
– No. of tasks available at a time is upper bound on achievable speedup

i.e Find maximum software concurrency or parallelism
(Decomposition)

DecompositionDecomposition

Grain (task) size
Problem
(Assignment)

(Task) Assignment(Task) Assignment

Dependency Analysis/graph

i.e larger

+ Good load balance in mapping phase

i.e. parallel

Task Size? How many tasks?

CMPE655 CMPE655 -- ShaabanShaaban
#52 lec # 3 Fall2013 9-10-2013

AssignmentAssignment
• Specifying mechanisms to divide work up among tasks/processes:

– Together with decomposition, also called partitioning.
– Balance workload, reduce communication and management cost

• May involve duplicating computation to reduce communication
cost.

• Partitioning problem:
– To partition a program into parallel tasks to give the shortest

possible execution time on a specific parallel architecture.
• Determine size and number of tasks in parallel program

• Structured approaches usually work well:
– Code inspection (parallel loops) or understanding of application.
– Well-known heuristics.
– Static versus dynamic assignment.

• As programmers, we worry about partitioning first:
– Usually independent of architecture or programming model.
– But cost and complexity of using primitives may affect decisions.

Communication/Synchronization
Primitives used in orchestration

Fine-Grain Parallel Computations → Tasks

To
Maximize
Speedup

Partitioning = Decomposition + Assignment

Number of processors?

.. of dependency graph

Task

CMPE655 CMPE655 -- ShaabanShaaban
#53 lec # 3 Fall2013 9-10-2013

OrchestrationOrchestration
• For a given parallel programming environment that realizes a parallel

programming model, orchestration includes:orchestration includes:
– Naming data.
– Structuring communication (using communication primitives)
– Synchronization (ordering using synchronization primitives).
– Organizing data structures and scheduling tasks temporally.

• Goals
– Reduce cost of communication and synchronization as seen by processors
– Preserve locality of data reference (includes data structure organization)
– Schedule tasks to satisfy dependencies as early as possible
– Reduce overhead of parallelism management.

• Closest to architecture (and programming model &
language).
– Choices depend a lot on communication abstraction, efficiency of primitives.
– Architects should provide appropriate primitives efficiently.

Tasks → Processes

Execution order (schedule)
overheads

Closer?

Done at or above Communication Abstraction Or threads

CMPE655 CMPE655 -- ShaabanShaaban
#54 lec # 3 Fall2013 9-10-2013

Mapping/SchedulingMapping/Scheduling
• Each task is assigned to a processor in a manner that attempts to

satisfy the competing goals of maximizing processor utilization and
minimizing communication costs.

• Mapping can be specified statically or determined at runtime by
load-balancing algorithms (dynamic scheduling).

• Two aspects of mapping:
– Which processes will run on the same processor, if necessary
– Which process runs on which particular processor

• mapping to a network topology/account for NUMA
• One extreme: space-sharing

– Machine divided into subsets, only one app at a time in a subset
– Processes can be pinned to processors, or left to OS.

• Another extreme: complete resource management control to OS
– OS uses the performance techniques we will discuss later.

• Real world is between the two.
– User specifies desires in some aspects, system may ignore

Task Duplication: Mapping may also involve duplicating
tasks to reduce communication costs

Processes → Processors
+ Execution Order (scheduling)

+ load balance

done by user program or system

1

2

To reduce communication time

CMPE655 CMPE655 -- ShaabanShaaban
#55 lec # 3 Fall2013 9-10-2013

Program Partitioning ExampleProgram Partitioning Example

Example 2.4 page 64
Fig 2.6 page 65
Fig 2.7 page 66
In Advanced Computer
Architecture, Hwang
(see handout)

CMPE655 CMPE655 -- ShaabanShaaban
#56 lec # 3 Fall2013 9-10-2013

A

B

C

D

E

F

G

A

CB

D E F

G

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Time

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Time

A

B
C

D

E

F

G

Sequential Execution
on one processor

Assume computation time for each task A-G = 3
Assume communication time between parallel tasks = 1
Assume communication can overlap with computation
Speedup on two processors = T1/T2 = 21/16 = 1.3

Task Dependency Graph Possible Parallel Execution Schedule on Two Processors P0, P1

P0 P1

Comm

Comm

Idle

Idle

Idle

Comm

Comm

Comm

A simple parallel execution example

Mapping of tasks to processors (given):
P0: Tasks A, C, E, F
P1: Tasks B, D, G

T1 =21

T2 =16

From lecture #1

Partitioning into tasks (given)

DOP?

CMPE655 CMPE655 -- ShaabanShaaban
#57 lec # 3 Fall2013 9-10-2013

Static Multiprocessor SchedulingStatic Multiprocessor Scheduling
Dynamic multiprocessor scheduling is an NP-hard problem.

Node Duplication: to eliminate idle time and communication delays, some
nodes may be duplicated in more than one processor.

Fig. 2.8 page 67

Example: 2.5 page 68
In Advanced Computer
Architecture, Hwang
(see handout)

CMPE655 CMPE655 -- ShaabanShaaban
#58 lec # 3 Fall2013 9-10-2013

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data
locality

Reduce communication and synchronization cost
as seen by the processor

Reduce serialization at shared resources
Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if
necessary

Exploit locality in network topology

Tasks → Processes

Processes → Processors
+ Execution Order (scheduling)

Determine size and number of tasks
?

+ Scheduling

