
MODULE 3
MULTIPROCESSOR SYSTEM INTERCONNECTS

3.1 Hierarchical Bus Systems
● A bus system consists of a hierarchy of buses connecting various system and

subsystem components in a computer.
● Each bus is formed with a number of signal, control, and power lines.
● Different buses are used to perform different interconnection functions.
● In general, the hierarchy of bus systems are packaged at different levels as depicted in

Fig. 7.2, including local buses on boards, backplane buses, and I/O buses.

Local Bus
● Buses implemented within processor chips or on printed circuit boards are called local

buses.
● A memory board uses a memory bus to connect the memory with the interface logic.
● An I/O or network interface chip or board uses a data bus.
● Each of these local buses consists of signal and utility lines.

Backplane Bus
● A backplane is a printed circuit on which many connectors are used to plug in functional

boards.
● A system bus consisting of shared signal paths and utility lines, is built on the backplane.

This system bus provides a common communication path along all plug-in boards.
I/O bus

● Input /output devices are connected to a computer system through an I/O bus such as
the SCSI (Small Computer Systems Interface) bus.

● This bus is made of coaxial cables with taps connecting disks, printer, and other devices
to a processor through an I/O controller

● Special interface logic is used to connect various board types to the backplane bus.
3.2 Crossbar Switch and Multiport Memory
Network Stages

● Depending on the interstage connections used, a single-stage network is also called a
recirculating network because data items may have to recirculate through the single
stage many times before reaching their destination.

● A single-stage network is cheaper to build, but multiple passes may be needed to
establish certain connections.

● The crossbar switch and multiport memory organization are both single-stage networks.
● A multistage network consists of more than one stage of switch boxes.
● Such a network should be able to connect from any input to any output.

Blocking versus Nonblocking Networks
● A multistage network is called blocking if the simultaneous connections of some multiple

input-output pairs may result in conflicts in the use of switches or communication links.
● In a blocking network,multiple passes through the network may be needed to achieve

certain input-output connections.
● A multistage network is called nonblocking if it can perform all possible connections

between inputs and outputs by rearranging its connections.
Crossbar Networks

● In a crossbar network every input port is connected to a free output port through a
crosspoint switch without blocking.

● A crossbar network is a single-stage network built with unary switches at the crosspoints.
● Each crosspoint in a crossbar network is a unary switch which can be set open or

closed, providing a point-to-point connection path between the source and destination.
● All processors can send memory requests independently and asynchronously.
● This poses the problem of multiple requests destined for the same memory module at

the same time. In such cases, only one of the requests is serviced at a time.

Crosspoint Switch Design

● Out of n crosspoint switches in each column of an n x m crossbar mesh, only one can be
connected at a time.

● To resolve the contention for each memory module, each crosspoint switch must be
designed with extra hardware.

● Multiplexer modules are used to select one of n read or write requests for service.
● Each processor sends in an independent request, and the arbitration logic makes the

selection based on certain fairness or priority rules.

Multiport Memory

● A multiport memory system employs separate buses between cache memory module &
each cpu.

● The memory module must have internal control logic to determine which port will have
access to memory at a given time.

● Memory access conflicts are resolved by assigning fixed priorities to each memory port..
● Advantage: High transfer rate can be achieved because of multiple paths.
● Drawback is the need for a large number of interconnection cables and connectors when

the configuration becomes large.

3.3 Multistage and Combining Networks

● Multistage networks are used to build larger multiprocessor systems.
● We describe two multistage networks, the Omega network and the Butterfly network,

Routing in Omega Network
● In general, an n-input Omega network has stages.nlog2
● Each stage requires switch modules.2

n
● The stages are labeled from 0 to from the input end to the output end.nlog2 − 1
● There are four types of switch connections: straight, crossover, upper broadcast and

lower broadcast.

● The interstage connection pattern is the perfect shuffle over 8 objects. The perfect

shuffle is obtained by shifting 1 bit to the left and wrapping around the most significant to
the least significant position.

● Data routing is controlled by inspecting the destination code in binary.
● When the ith high-order bit of the destination code is a 0, a 2 x 2 switch at stage i

connects the input to the upper output. Otherwise, the input is directed to the lower
output.

● Consider the permutation 0, , , ,)(1,)(5)π1 = (7 6 4 2 3
❖ Which maps , , , , , , ,0 → 7 7 → 6 6 → 4 4 → 2 2 → 0 1 → 3 3 → 1 5 → 5
❖ Consider the routing of a message from input 001 to output 011
❖ This involves the use of switches A, B, and C.
❖ Since the most significant bit ofthe destination 011 is a "zero“, switch A must be

set straight so that the input 001 is connected to the upper output.
❖ The middle bit in 011 is a “one”, thus input 4 to switch B is connected to the lower

output with a “crossover” connection.
❖ The least significant bit in fill is a "one", implying a flat connection in switch C.
❖ Similarly the remaining connections are done.

❖ There exists no conflict in all the switch settings needed to implement the
permutation π1

● Consider the permutation 0, , , ,)(1,)(2)π2 = (6 4 7 3 5

❖ Which maps 0 , , , , , , ,→ 6 6 → 4 4 → 7 7 → 3 3 → 0 1 → 5 5 → 1 2 → 2
❖ Conflicts in switch settings do exist in three switches identified as F, G, and H.
❖ The conflicts occurring at F are caused by the desired routings 000 —> 110 and

100 —> 111.
❖

❖ Since both destination addresses have a leading bit 1, both inputs to switch F

must be connected to the lower output. To resolve the conflicts, one request must
be blocked.

❖ Similarly, we see conflicts at switch G between 011—>000 and 111 —> 011, and
at switch H between 101 -—> 001 and 011 —> 000.

❖ At switches I and J, broadcast is used from one input to two outputs, which is
allowed if the hardware is built to have four legitimate states.

❖ This example indicates the fact that not all permutations can be implemented in
one pass through the Omega network.

❖ The Omega network is a blocking network.
❖ In case of blocking, one can establish the conflicting connections in several

passes.
❖ For the example , we can connect 000 —> 110, 001 —> 101, 010 —> 010,π2

101 —> 001, 110 —> 100 in the first pass and 011—>000, 100 —> 111, 111 →
011 in the second pass.

❖ In general, if 2 x 2 switch boxes are used, an n-input Omega network can
implement permutations in a single pass.n 2

n

❖ There are n! permutations in total.
❖ In general, a maximum of passes are needed for an n-input Omega.nlog2

● The Omega network can also be used to broadcast data from one source to many

destinations, as exemplified in Fig.a, using the upper broadcast or lower broadcast
switch settings.

● In Fig. a, the message at input 001 is being broadcast to all eight outputs through a
binary tree connection.

● The two way shuffle interstage connections can be replaced by four-way shuffie

interstage connections when 4 x 4 switch boxes are used as building blocks, as
exemplified in Fig. 7.9b for a I6-input Omega network with = 2 stages.16log4

● Note that a four-way shuffle corresponds to dividing the I6 inputs into four equal subsets
and then shuffling them evenly among the four subsets.

Routing In Butterfly Networks

● This class of networks is constructed with crossbar switches as building blocks.

● Note that no broadcast connections are allowed in a Butterfly network, making these
networks a restricted subclass of Omega networks.

The Hot-Spot Problem

● When the network traffic is nonuniform, a hot spot may appear corresponding to a
certain memory module being excessively accessed by many processors at the same
time.

● Hot spots may degrade the network performance significantly.
● The purpose was to combine multiple requests heading for the same destination at

switch points where conflicts are taking place.
3.4 CACHE COHERENCE AND SYNCHRONIZATION MECHANISMS
Cache coherence protocols for coping with the multicache inconsistency problem are
considered below. Snoopy protocols are designed for bus-connected systems.
Directory—based protocols apply to network-connected systems.
3.4.1 The Cache Coherence Problem

In a memory hierarchy for a multiprocessor system, data inconsistency may occur
between adjacent levels or within the same level.

Caches in a multiprocessing environment introduce the cache coherence problem. When
multiple processors maintain locally cached copies of a unique shared-memory location, any
local modification of the location can result in a globally inconsistent view of memory. Cache
coherence schemes prevent this problem by maintaining a uniform state for each cached block
of data. Cache inconsistencies caused by data sharing, process migration, or IMO are explained
below.

Inconsistency in Data Sharing The cache inconsistency problem occurs only when multiple
private caches are used. In general, three sources of the problem are identified: sharing of
writable data, process migration, I/O activity.

● Let X be a shared data element which has been referenced by both processors. Before
update, the three copies of X are consistent.

● If processor P1 writes new data X’ into the cache, the same copy will be written
immediately into the shared memory under a write through policy. In this case.
inconsistency occurs between the two copies in the two caches

● On the other hand, inconsistency may also occur when a write back policy is used.

Process Migration and I/O

● Figure b shows the occurrence of inconsistency after a process containing a shared
variable X migrates from processor 1 to processor 2 using the write-back cache on the
right.

● In the middle, a process migrates from processor 2 to processor 1 when using
write-through caches.

● In both cases, inconsistency appears between the two cache copies, labeled Xand X’.

Inconsistency due to I/O operations

● when the I/O processor loads a new data X’ into the main memory, bypassing the write
through caches (middle diagram in Fig. 7.13a), inconsistency occurs between cache 1
and the shared memory.

● When outputting a data directly from the shared memory (bypassing the caches), the
write-back caches also create inconsistency.

● One possible solution to the I/O inconsistency problem is to attach the I/O processors
(IOP1 and IOP2) to the private caches (C1 and C2), respectively.

3.4.2 Snoopy Bus Protocols

● In using private caches associated with processors tied to a common bus, two
approaches have been practiced for maintaining cache consistency: write invalidate and
write update policies

● The write-invalidate policy will invalidate all remote copies when a local cache block is
updated.

● The write-update policy will broadcast the new data block to all caches containing a copy
of the block.

● Consider three processors (Pl, P2, and Pn) maintaining consistent copies of block X in
their local caches and in the shared-memory module marked X.

● Using a write-invalidate protocol, the processor P1 modifies (writes) its cache from X to

X’, and all other copies are invalidated via the bus (denoted I in Fig.b]. invalidated blocks
are sometimes called dirty, meaning they should not be used.

● The write-update protocol (Fig.c) demands the new block content X’ be broadcast to all

cache copies via the bus. The memory copy is also updated if write-through caches are
used. In using write-back caches, the memory copy is updated later at block
replacement time.

Write-Through Caches

● The states of a cache block copy change with respect to read, write, and replacement
operations in the cache.

● Figure 7.15 shows the state transitions for two basic write-invalidate Snoopy protocols
developed for write-through and write-back caches, respectively.

● A block copy of a write-through cache i attached to processor i can assume one of two
possible cache states: valid or invalid (Fig. 7.15a).

● A remote processor is denoted j, where j i. For each of the two cache states, six =/
possible events may take place. Note that all cache copies of the same block use the
same transition graph in making state changes.

● In a valid state (Fig. 7.15a), all processors can read (R(i),R(j)) safely. Local processor i
can also write (W(i)) safely in a valid state.

● The invalid state corresponds to the case of the block either being invalidated or being
replaced (Z(i) or Z(j)).

● Wherever a remote processor writes (W(j)) into its cache copy all other cache copies
become invalidated.

● The cache block in cache i becomes valid whenever a successful read (R(i)) or write
(W(i)) is carried out by a local processor i.

Write-Back Caches
● The valid state of a write-back cache can be further split into two cache states, labeled

RW (read-write) and RO (read-only) as shown in Fig. 7.15b.
● The INV (invalidated or not-in-cache) cache state is equivalent to the invalid state

mentioned before.
● This three-state coherence scheme corresponds to an ownership protocol.

● When the memory owns a block, caches can contain only the RO copies of the block. In
other words, multiple copies may exist in the RO state and every processor having a
copy (called a keeper of the copy) can read (R(i), R(j) the copy safely.

● The INV state is entered whenever a remote processor writes (W(j)) its local copy or the
local processor replaces (Z(i)) its own block copy.

● The RW state corresponds to only one cache copy existing in the entire system owned
by the local processor i. Read (R(i)) and write (W(i)) can be safely performed in the RW
state.

● From either the RO state or the INV state, the cache block becomes uniquely owned
when a local write (W(i)) takes place.

Write-once Protocol

● James Goodman (1983) proposed a cache coherence protocol for bus-based
multiprocessors.

● This scheme combines the advantages of both write-through and write-back
invalidations.

● In order to reduce bus traffic, the very first write of a cache block uses a write-through
policy.

● This will result in a consistent memory copy while all other cache copies are invalidated.
● After the first write, shared memory is updated using a write-back policy. This scheme

can be described by the four-state transition graph shown in Fig. 7.16.
● The four cache states are defined below:

1. Valid: The cache block, which is consistent with the memory copy, has been read
from shared memory and has not been modified.

2. Invalid: The block is not found in the cache or is inconsistent with the memory
copy.

3. Reserved: Data has been written exactly once since being read from shared
memory. The cache copy is consistent with the memory copy, which is the only
other copy.

4. Dirty Thc cache block has been modified (written) more than once, and the cache
copy is the only one in the system (thus inconsistent with all other copies).

● The solid lines in Fig. 7.16 correspond to access commands issued by a local processor
labeled read-miss, write-hit, and write-miss.

● Whenever a read-miss occurs, the valid state is entered.
● The first write-hit leads to the reserved state.
● The second write-hit leads to the dirty state, and all future write-hits stay in the dirty

state.
● Whenever a write-miss occurs, the eache block enters the dirty state.
● The dashed lines correspond to invalidation commands issued by remote processors via

the snoopy bus.
● The read-invalidate command reads a block and invalidates all other copies.
● The write-invalidate command invalidates all other copies of a block. The bus-read

command corresponds to a normal memory read by a remote processor via the bus

Cache Events and Actions The memory-access and invalidation commands trigger the
following events and actions:

● Read-miss: When a processor wants to read a block that is not in the cache, a
read-miss occurs. A bus-read operation will be initiated. If no dirty copy exists, then main
memory has a consistent copy and supplies a copy to the requesting cache. If a dirty
copy does exist in a remote cache, that cache will inhibit the main memory and send a
copy to the requesting cache. In all cases, the cache copy will enter the valid state after
a read-miss.

● Write-hit: If the copy is in the dirty or reserved state, the write can be carried out locally
and the new state is dirty. If the new state is valid, a write-invalidate command is
broadcast to all caches, invalidating their copies. The shared memory is written through,
and the resulting state is reserved after this first write.

● Write-miss: When a processor fails to write in a local cache, the copy must come either
from the main memory or from a remote cache with a dirty block. This is accomplished
by sending a read-invalidate command which will invalidate all cache copies. The local
copy is thus updated and ends up in a dirty state.

● Read-hit: Read-hits can always be performed in a local cache without causing a state
transition or using the snoopy bus for invalidation.

● Block Replacement: If a copy is dirty, it has to be written back to main memory by block
replacement. If thc copy is clean (i.e., in either the valid, reserved, or invalid state), no
replacement will take place.

3.4.3 Directory-Based Protocols

When a multistage or packet switched network is used to build a large multiprocessor
with hundreds of processors, the snoopy cache protocols must be modified to suit the network
capabilities. Since broadcasting is expensive to perform in such a network, consistency
commands will be sent only to those caches that keep a copy of the block. This leads to
directory based protocols for network-connected multiprocessors.
Directory Structures

● In a multistage or packet switched network, cache coherence is supported by using
cache directories to store information on where copies of cache blocks reside.

● The first directory scheme, which used a central directory containing duplicates of all
cache directories. This central directory, providing all the information needed to enforce
consistency, is usually very large and must be associatively searched, like the individual
cache directories. Contention and long search times are two drawbacks in using a
central directory for a large multiprocessor

● In a distributed-directory scheme each memory module maintains a separate directory
which records the state and presence information for each memory block.

● A cache-coherence protocol that does not use broadcasts must store the locations of all
cached copies of each block of shared data. This list of cached locations, whether
centralized or distributed, is called a cache directory.

● A directory entry for each block of data contains a number of pointers to specify the
locations of copies of the block.

● Each directory entry also contains a dirty bit to specify whether a particular cache has
permission to Write the associated block of data.

● Different types of directory protocols fall under three primary categories: full map
directories, limited directories, chained directories.

Full-Map Directories
● Full-map directories store enough data associated with each block in global memory so

that every cache in the system can simultaneously store a copy of any block of data.
That is each directory entry contains N pointers, where N is the number of processors in
the system.

● The full-map protocol implements directory entries with one bit per processor and a dirty
bit. Each bit represents the status of the block in the corresponding processor's cache
(present or absent).

● If the dirty bit is set, then one and only one processor's bit is set and that processor can
write into the block.

● In the first state, location X is missing in all of the caches in the system.
● The second state results from three caches (Cl, C2, and C3) requesting copies of

location X.
● Three pointers (processor bits) are set in the entry to indicate the caches that have

copies of the block of data.
● In the first two states, the dirty bit on the left side of the directory entry is set to clean (C),

indicating that no processor has permission to write to the block of data.
● The third state results from cache C3 requesting write permission for the block.
● In the final state, the dirty bit is set to dirty (D), and there is a single pointer to the block

of data in cache C3.
Let us examine the transition from the second state to the third state in more detail. Once
processor P3 issues the write to cache C3, the following events will take place:

1. Cache C3 detects that the block containing location X is valid but that the processor
does not have permission to write to the block, indicated by the block‘s write-permission
bit in thc cache.

2. Cache C3 issues a write request to the memory module containing location X and stalls
processor P3.

3. The memory module issues invalidate requests to caches C1 and C2.
4. Caches C1 and C2 receive thc invalidate requests, set the appropriate bit to indicate that

the block containing location X is invalid and send acknowledgements back to the
memory module.

5. The memory module receives the acknowledgements, sets the dirty bit, clears the
pointers to caches C1 and C2, and sends write permission to cache C3.

6. Cache C3 receives the write permission message, updates the state in the cache, and
reactivates processor P3.

Limited Directories
● Limited directory protocols are designed to solve the directory size problem.
● A directory protocol can be classified as .ir XD i
● The symbol i stands for the number of pointers, and X is NB for a scheme with no

broadcast.
● A full-map scheme without broadcast is represented as .ir NBD N
● A limited directory protocol that uses i<N pointers is denoted .ir NBD i

● Figure b shows the situation when three caches request read copies in a memory

system with a protocol.ir NBD 2
● In this case, we can view the two-pointer directory as a two-way set-associative cache

of pointers to shared copies.
● When cache C3 requests a copy of location X, the memory module must invalidate the

copy in either cache C1 or cache C2. This process of pointer replacement is called
eviction.

● Since the directory acts as a set-associative cache, it must have a pointer replacement
policy.

● protocols allow more than i copies of each block of data to exist, but they resort toir BD i
a broadcast mechanism when more than i cached copies of a block need to be
invalidated.

Chained Directories
● Chained directories realize the scalability of limited directories without restricting the

number of shared copies of data blocks.
● This type of cache coherence scheme is called a chained scheme because it keeps

track of shared copies of data by maintaining a chain of directory pointers.
● The simpler of the two schemes implements a singly linked chain, which is best

described by example (Fig.c).

● Suppose there are no shared copies of location X. If processor P1 reads location X, the

memory sends a copy to cache C1, along with a chain termination (CT) pointer. The
memory also keeps a pointer to cache C1.

● Subsequently, when processor P2 reads location X, the memory sends a copy to cache
C2, along with the pointer to cache C1. The memory then keeps a pointer to cache C2.

● By repeating the above step, all of the caches can cache a copy of the location X.
● If processor P3 writes to location X, it is necessary to send a data invalidation message

down the chain.
● To ensure sequential consistency, the memory module denies processor P3 write

permission until the processor with the chain termination pointer acknowledges the
invalidation of the chain.

● Perhaps this scheme should be called a gossip protocol (as opposed to a snoopy
protocol) because information is passed from individual to individual rather than being
spread by covert observation.

