Inheritance

Types of inheritance in java

ClassA ClassA ClassA
F 3 r 3
r 3
1) Single 3) Hierarchical
ClassC
2) Multilevel

Single Inheritance Example

File: TestInheritance.java

1. class Animal{

2. void eat(){System.out.printIn("eating...");}
3. }

4. class Dog extends Animal{

5.
6
7
8
9

void bark(){System.out.printin("barking...");}

.

. class TestInheritance{

. public static void main(String args[]){
. Dog d=new Dog();

10. d.bark();
11.d.eat();

12,3}

Output:
barking...
eating...

Multilevel Inheritance Example

File: TestInheritanceZ.java

. class Animal{
. void eat(){System.out.printIn("eating..."); }
b

. class Dog extends Animal{

b
. class BabyDog extends Dog{

. void weep(){System.out.printin("weeping...");}

1
2
3
4
5. void bark(){System.out.printin("barking...");}
6
7
8
9

b

10. class Testlnheritance2{

11. public static void main(String args[]){
12. BabyDog d=new BabyDog();
13.d.weep();

14.d.bark();

15.d.eat();

16.}}

Output:
weeping...
barking...
eating...

Hierarchical Inheritance Example

File: TestInheritance3.java

. class Animal{

. void eat(){System.out.printin("eating..."); }
b

. class Dog extends Animal{

by

. class Cat extends Animal{

. void meow(){System.out.printin("meowing...");}

1
2
3
4
5. wvoid bark(){System.out.printin("barking...");}
6
7
8
9

by

10. class TestInheritance3{
11. public static void main(String args[]){
12.Cat c=new Cat();

13.c.meow();
14.c.eat();
15.//c.bark();//C.T.Error

16.}}

Output:
meowing...

eating...

Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not
supported in java.

Consider a scenario where A, B, and C are three classes. The C class inherits A
and B classes. If A and B classes have the same method and you call it from
child class object, there will be ambiguity to call the method of A or B class.
Since compile-time errors are better than runtime errors, Java renders
compile-time error if you inherit 2 classes. So whether you have same method or
different, there will be compile time error.

Inheritance Basics

To inherit a class, you simply incorporate the definition of one class into another by using the
extends keyword.

General Syntax

class subclass-name extends superclass-name

{
// body of class

The following program creates a superclass called A and a subclass called B. Notice how the
keyword extends is used to create a subclass of A.

/I A simple example of inheritance.

/I Create a superclass.

S/ A simple example of inheritance.

/{ Create a superclass.
class A |
int i, j;:

vold showij () |
System.out.println{™i and j: " + i + " ™ + jj:
!
3

// Create a subclass by extending class A.
class B extends A |
int k;

void showk() |
System.out.println{™k: ™ + kj;

woid sum{} |
Bystem.out.println{"i+j+k: " + [(i+j+k});:

1

class Simplelnheritance |
public static wvold main(String args []) {
& superlb = new A():
B sub0b = new B();

/f The superclass may be used by itself.
guper0b.1 = 10;

super0b.j = 20;

System.out.println("Contents of superOb: ")
super0b. showij () ;

System.out.println{);

/* The subclass has acecess to all public members of
its superclass. */

subdb.i = 7;

sublb.j = 8;

sublb.k = 3;

System.out.println("Contents of subldb: "};:

sublb. showi]j () ;

sublb. showk () 2

System.out.println():;

System.out.println{™Sum of i, j and k in sublb:"});
sublb. sum() :

OUTPUT

Contents of superdb:
i and j: 10 20

Contents of sublb:
iand j: 7 8
k: 3

Bum of i, j and k in sublb:
i+j+k: 24

Member Access and Inheritance

Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private.

A More Practical Example

/4 This program uses inheritance to extend Box.
class Box |

double width;

double height;

double depth;

/¢ construct clone of an cbhiject

Box {Box ob) { // pass object to constructor
width = ob.width;
height = ocbh.height;

depth = ob.depth;

/¢ constructor used when all dimensions specified
Box ({double w, double h, double 4} |

width = w;
height = h;
depth = d;

/4 constructor used when no dimensicns specified

Boxi{} |
width = =1; /4 nuse =1 to indicate
height = -1; // an uninitialized
depth = =1; // box

/4 constructor used when cube is created
Box {double len) |
width = height = depth = len;

// compute and return wolume
double volume ()} {
return width * height * depth;

// Here, Box is extended to include weight.
class BoxWeight extends Box |

Chapter 8

double weight; // weight of box

!/ constructor for BoxWeight
BoxHWeight (double w, double h, double d, double m} |

width = w;
height = h;
depth = d

H]
weight = m;

class DemoBoxWeight |
pubklic static woid main(String args[]} |
BoxWeight myboxl = new BoxWeight (10, 20, 15, 34.3):
BoxWeight mybox?2 = new BoxWeight (2, 3, 4, 0.076);
double wol;

vol = myboxl.volume();

System.ount.println{"Volume of myboxl 13 "™ + wol);
System.out.println{™HWHeight of myboxl is " + myboxl.weight);
System.out.println();

vol = myboxZ.wvolume () ;

System.out.println(™Volume of mybox2 is "™ + wol);
System.out.println{™Weight of myboxZ is " + mybox2.weight);

The output from this program is shown here:

Volume of myboxl i
Weight of myboxl 1

m m

3000.0
34.3

Volume of mybox2 1
Weight of mybox2

m m

[N

once you have created a superclass that defines the general aspects of an object, that
superclass can be inherited to form specialized classes. Each subclass simply adds its own
unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object

A reference variable of a superclass can be assigned a reference to any subclass derived
from that superclass.

class RefbDemo |

public static woid main(S5tring args[]) {

BoxWeight weightbox = new BoxWeight (3, 5, 7, B.37):
Box plainbox = new Box():

double wol;

wvol = weightbox.wvolume ()

stem.out.println{"Volume of weightbox is ™ + wol}:

System.out.println("Weight of weightbeox is ™ +
weightbox.weight);

System.out.println{):

/ aszign BoxWeight reference to Box reference
plainbox = weightbox;

vol = plainbox.volume(}; J// OK, volume() defined in Box
System.out.println{"Volume of plainbox is ™ + wol);

/* The following statement is invalid because plainbox
does not define a weight member. =/

ff SBystem.out.println{"Weight of plainbox is "™ + plainbox.weight);
I

Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to Box
objects. Since BoxWeight is a subclass of Box, it is permissible to assign plainbox a reference
to the weightbox object.

Using super

Whenever a subclass needs to refer to its immediate superclass, it can do so by use
of the keyword super.
super has two general forms.

The first calls the superclass’ constructor.
The second is used to access a member of the superclass that has been hidden by a
member of a subclass.

Using super to Call Superclass Constructors

A subclass can call a constructor defined by its superclass by use of the following form of
super:
super(arg-list);

Here, arg-list specifies any arguments needed by the constructor in the superclass. super()
must always be the first statement executed inside a subclass’ constructor.

To see how super() is used, consider this improved version of the BoxWeight class:

pth using super()
, double m} |

NSCricCtor

Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box
constructor to be called, which initializes width, height, and depth using these values.
BoxWeight no longer initializes these values itself. It only needs to initialize the value unique
to it: weight. This leaves Box free to make these values private if desired.

A Second Use for super

The second form of super acts somewhat like this, except that it always refers to the
superclass of the subclass in which it is used. This usage has the following general
form:

Super.member

Here, member can be either a method or an instance variable.

/4 Using super to ocvercome name hiding.
class A |
int i:

/4 Create a subclass by extending class A,

Chapter 8 Inheritar

class B extends A |
int i; ff this i1 hides the i in A&

B{int a, int b} {
super.i = a; // i in A
i=by //1in B

void show() |
System.out.println(™i in superclass:
System.out.println{™i in subclass: "™ + i};

+ super.i);

class UseSuper |
public static void main(String args[]) |
B sub0Ob = new B(l, 2):

sublb.show ()

This program displays the following:

i in superclass: 1
i in subclass: 2

S Using super to overcome name hiding.
class A |
int i:

f/ Create a subclass by extending class A.

Chapter

class B extends A |
int i; ff this i hides the i in A

E{int a, int b} |
super.i =

a; f/ 1 in A
i=by // 1 in B

id show()} |
System.out.println{™i in superclass: " + super.i);
System.out.println{(™1i in subclass: ™ + 1};

L

class UseSuper |
public static veoid main(String args[]) |
B sub0Ob = new B{l, 2):

sublb.show () 2

This program displays the following:

i in superclass: 1
1 in subclass: 2

Method Overriding

In a class hierarchy, when a method in a subclass has the same name and type signature as
a method in its superclass, then the method in the subclass is said to override the method in
the superclass. When an overridden method is called from within its subclass, it will always
refer to the version of that method defined by the subclass. The version of the method
defined by the superclass will be hidden.

f Method overriding.
class A |

int 1, j:

Af{int a, int b} |
i = a;
j = b;

/4 display 1 and j
woid show() |
System.out.println{™i and j3: " + 1 + " " + j}):

class B extends A |
int k;

B{int a, int b, int c)

super{a, b);
k =.¢;

Jf display k — this overrides show() in A
wvoid show(]
System.ocut.println{"k: ™ + k);

[

class Owerride |
public static woid main(String args[]) |
B subOb = new B{l, 2, 3):

subOb.show(); // this calls show(} in B

The output produced by this program is shown here:
k: 3
If you wish to access the superclass version of an overridden method, you can do so by using

super. For example, in this version of B, the superclass version of show() is invoked within
the subclass’ version. This allows all instance variables to be displayed.

class B extends A |
int k;

B{int a, int b, int e)
superi{a, b);

k= c;

void show(} |
super.show(); // this calls A's showl()
Bystem.out.println{™k: ™ + kj;

If vou substitute this version ol A into the previous program, vou will see the following
outpuE:

i and j: 1 2

k=

Method overriding occurs only when the names and the type signatures of the two methods
are identical. If they are not, then the two methods are simply overloaded.

Using Abstract Classes

certain methods be overridden by subclasses by specifying the abstract type modifier. These
methods are sometimes referred to as subclasser responsibility because they have no
implementation specified in the superclass. Thus, a subclass must override them—it cannot
simply use the version defined in the superclass. To declare an abstract method, use this
general form:

abstract type name(parameter-list);

no method body is present.
Any class that contains one or more abstract methods must also be declared abstract. To
declare a class abstract, you simply use the abstract keyword in front of the class keyword at
the beginning of the class declaration. There can be no objects of an abstract class. That is,
an abstract class cannot be directly instantiated with the new operator.

Here is a simple example of a class with an abstract method, followed by a class which
implements that method:

1 of abstract.

still allowed in abstract classes

Eystem.out.println({"This is a concrete method.");

class B extends A |

vold callme() |
System.out.println("B'"s implementation of callme.™};
1
class AbstractDemo |
public static wvoid main(String args[]) |
B b =mnew B():
b.callme():
b.callmetoo ()

class A implements a concrete method called callmetoo(). This is perfectly acceptable.
Abstract classes can include as much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used to create
object references, because Java’s approach to run-time polymorphism is implemented
through the use of superclass references.

/! Using abstract methods and classes.
gbstract class Figure |

double diml;

double dim2;

Figure (double a, double b) |
diml a:
dim2 b;

/f area is now an abstract method
abstract double areal();:

class Rectangle extends Figure |
Eectangle (double a, double b} |
super{a, b);

/f override area for rectangle

double area()
System.out.println("Inside Area for Rectangle.");
return diml * dim2;

class Triangle extends Figure
Triangle {double a, double b)
superi{a, b):

/f owverride area for right triangle

double areal()
System.out.println("Inside Area for Triangle."};
return diml * dim2 / 2;

class Abstracthreas |
public static wvoid main(String args[]) {

// Figure f = new Figure(ld, 10); // illegal now
Rectangle r = new Rectangle(9%, 5):
Triangle t = new Triangle (10, &}:
Figure figref; // this is OK, no cbhject is created
figref = r;
Eystem.out.println{"Area is " + figref.areal()):

figref = t;

System.out.println(™Area is "™ + figref.area(}}:

Although it is not possible to create an object of type Figure, you can create a reference
variable of type Figure. The variable figref is declared as a reference to Figure, which means
that it can be used to refer to an object of any class derived from Figure.

Using final with Inheritance

1. Using final to Prevent Overriding
To disallow a method from being overridden, specify final as a modifier at the start of its
declaration. Methods declared as final cannot be overridden. The following fragment
illustrates final:

class A |

final woid meth{] {

System.out.println("This is a final method.™);
|
class B extends A
void methi() ERROR! Can't override
System.out.println("Illegal!™);

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do so, a
compile-time error will result.
2. Using final to Prevent Inheritance

Declaring a class as final implicitly declares all of its methods as final,.
Here is an example of a final class:

final class A |

Packages

Java provides a mechanism for partitioning the class name space into more manageable
chunks. This mechanism is the package. The package is both a naming and a visibility control
mechanism.

Defining a Package

To create a package is quite easy: simply include a package command as the first statement
in a Java source file. Any classes declared within that file will belong to the specified package.
The package statement defines a name space in which classes are stored.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package.

For example, the following statement creates a package called MyPackage:
package MyPackage;

You can create a hierarchy of packages. To do so, simply separate each package name
from the one above it by use of a period. The general form of a multileveled package
statement is shown here:

package pkg1[.pkg2[.pkg3]];

A Short Package Example

R

f & simple package
package MyPack;

class Balance |
String name;

double hal;

Balance (String n, double b)
nams = n;

vold show() |

if (bal<0)
System.cut.print{™=--> "}:
Eystem.out.println{name + ": %" + bal);

class AccountBalance |

public static wvoid main(String args[]) |
Balance current[] = new Balance[3];
current [0] = new Balance ("K. J. Fielding™, 123.23});
current[1] = new Balance ("Will Tell™, 157.02);:
current [2] = new Balance ("Tom Jackson™, -12.33);
for (int 1=0; 1<3; 1++) current[i].show();

Call this file AccountBalance.java and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack
directory. Then, try executing the AccountBalance class, using the following command
line:

java MyPack.AccountBalance
As explained, AccountBalance is now part of the package MyPack. This means that it cannot
be executed by itself. That is, you cannot use this command line: java AccountBalance
AccountBalance must be qualified with its package name.

Access Protection

— e —— - -

Private Mo Modifier Protected Public
Same class Yes Yes Yes Yes
Same package subclass No Yes Yes Yes
Same package non-subclass No Yes Yes Vs
Different package subelass M Mo Yes Yes
Different package non-subclass No Mo Mo Yes

Table 9-1 Class Member Access

Importing Packages
This is the general form of the import statement:
import pkg1 [.pkg2].(classname | *);
pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate package
inside the outer package separated by a dot (.).

Finally, you specify either an explicit classname or a star (*), which indicates that the Java
compiler should import the entire package. This code fragment shows both forms in use:
import java.util.Date;
import java.io.*;

Interfaces

Using the keyword interface, you can fully abstract a class’ interface from its implementation.
That is, using interface, you can specify what a class must do, but not how it does it.
Interfaces are syntactically similar to classes, but they lack instance variables, and their
methods are declared without any body.

Defining an Interface An interface is defined much like a class. This is a simplified general
form of an interface:

arcess interface names |
return-type et fod-riame] f[i}rerre meter-lisi):

relurn-tyfae .lr!ﬁ"frrx.l'-rrrmrr'_j[Iimrre meter-lisi);

I"I.'!'.h" ;FH:’HI-T.'I'I'J .H-I'h'.l‘]-l"".l.r = er"ru':

I"I.'!'.h" ;FH:’HI-T.'I'I'J H-I'H.l‘]-l""? = er"ru':

retvrn-tyfre method-nameN(parameterlisi);

I"ljllh" .|||.l HE’H’-T.'I’:'.I’ ek Ff]-l’“'.'\l =il '-I'I'IH-!"".

l

When no access modifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as
public, the interface can be used by any other code.

Here is an example of an interface definition. It declares a simple interface that contains one
method called callback() that takes a single integer parameter.

1nterface Callback |

vold callback{int param);

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, include the implements clause in a class definition, and then create
the methods defined by the interface. The general form of a class that includes the
implements clause looks like this:

L]
class elassname [extends superclass] [implements inlerface [interface..]] |
A/ class-hody

|

If a class implements more than one interface, the interfaces are separated with a comma.
Here is a small example class that implements the Callback interface shown earlier:

class Client implements Callback |
/4 Implement Callback's interface
public woid callback{int p)

System.out.println{"callback called with " + p};:

!
It is both permissible and common for classes that implement interfaces to define additional
members of their own. For example, the following version of Client implements callback() and
adds the method nonlfaceMeth():

class Client implements Callback |
/¢ Implement Callback's interface
public woid callback{int p)
System.out.println({™callback called with " + p}:

vold nonIfaceMeth() |
System.out.println{™Classes that implement interfaces
"may alsoc define other members, too.™):

L

Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends.

/4 One interface can extend another.
interface A §

void methl () ;

void meth2 () ;

/4 B now includes methl () and methZ() -- it adds m=th3(}.
interface B extends A |
void meth3{);

}

.

/4 This class must implement all of A and B
class MyClass implements B |
public woid methl({) |
System.ocut.println{"Implement methl{}."™);
}

public woid meth2 () |
System.out.println("Implement meth2 () .™);

public wvoid meth3{) |
System.out.println({"Implement meth3{} .™);
i

}

class IFExtend |
public static wveoid main(String argl]}
MyClass ob = new MyClass();

ocb.methl () ;
ch.meth2 () ;
cb.meth3 () ;

any class that implements an interface must implement all methods defined by that interface,
including any that are inherited from other interfaces.

Exception Handling

An exception is an abnormal condition that arises in a code sequence at run time. In other
words, an exception is a runtime error.

Java exception handling is managed via five keywords: try, catch, throw, throws, and
finally.

This is the general form of an exception-handling block:

iry {
/¢ block of code to monitor for errors

}

caich |:_.Ir'...\.'l"n"lir-'lrn'ff“T.‘[]f?c".lr exh) |
exce plion handler for f:'l'r'afJ!Erf.uT".ll'#:f

!

catch l:f'.'xr.l'l.b.f.'rf.u?".']l'ﬁ'j ex(h) |
/ exception handler for f'.'.fr'a'lf?{fruﬂﬂll'ﬂ'?

i
.f-]l'i'.ﬂ]‘_; |
/4 block of code to be executed after oy hlock ends
i
Here, ExceptionType is the type of exception that has occurred

Exception Types
Lnapter IU Exception

Throwable

e

Exception Error

[H'.mt:nwE-.\ﬂ:pl:i-nn

All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the
top of the exception class hierarchy. Immediately below Throwable are two subclasses that
partition exceptions into two distinct branches. One branch is headed by Exception. This
class is used for exceptional conditions that user programs should catch. This is also the
class that you will subclass to create your own custom exception types. There is an important
subclass of Exception, called RuntimeException. Exceptions of this type are automatically
defined for the programs that you write and include things such as division by zero and invalid
array indexing..

The other branch is topped by Error, which defines exceptions that are not expected to be
caught under normal circumstances by your program.

Using try and catch

To guard against and handle a run-time error, simply enclose the code that you want to
monitor inside a try block. Immediately following the try block, include a catch clause that
specifies the exception type that you wish to catch.

class ExcZ |
public static woid main(String arg
int d, aj;

n

[1)

7 { f// monitor a block of code.

T

o

m
a in

iz

42 [4;
yetem.out.println("This will not be printed.");:
atch (ArithmeticException e) { // catch divide-by-zero error
=

E
c
tem.out . .println{"Division by zero.");

LI W]

W ot

T

System.out.println("After catch statement."}:

This program generates the following outpui:

Diwvision by zero.
After catch statemsnt.

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code. To handle
this type of situation, you can specify two or more catch clauses, each catching a different
type of exception. When an exception is thrown, each catch statement is inspected in order,
and the first one whose type matches that of the exception is executed. After one catch
statement executes, the others are bypassed, and execution continues after the try / catch
block.

/) Demonstrate multiple catch statements.
class MultipleCatches |
public static woid main(String args[]) |
try |
int a = args.length;
System.ocut.println{"a = " + a);
int b = 42 /) a;
int c[] = { 1 }:
c[42] = 99;
} catch(ArithmeticException e)
System.out .println{"Divide by 0: " + e};
catch (ArrayIndexOutOfBoundsException e) |
System.out.println("Array index oob: ™ + e);

System.out.println("After try/catch blocks."):
1

Here is the output generated by running it both ways:

C:h\>java MultipleCatches
a =10

Divide by 0: java.lang.ArithmeticException: [by zero

After try/catch blocks.

C:h\>*java MultipleCatches TesthArg

a=1

Array index oob: Jjava.lang.ArraylndexCOutOfBoundsException:42

After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception
subclasses must come before any of their superclasses. This is because a catch statement
that uses a superclass will catch exceptions of that type plus any of its subclasses.

Nested try Statements

a try statement can be inside the block of another try. Each time a try statement is entered,
the context of that exception is pushed on the stack. If an inner try statement does not have a
catch handler for a particular exception, the stack is unwound and the next try statement’s
catch handlers are inspected for a match. This continues until one of the catch statements
succeeds, or until all of the nested try statements are exhausted. If no catch statement
matches, then the Java run-time system will handle the exception.

/4 An example of nested try statements.
class HestTry

public static woid main(String args[]) |
try {
int a = args.length;
/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */
int b = 42 § a;
System.out.println(™a = " + a);
try { // nested try block

f* If one command-line arg is used,
then a divide-by-zero exception
will be generated by the following code. */

if{a==1) a = af{a=-a): // division by zer

/* If two command-line args are used,

then generate an owut-cf-bounds exception. */
if{a==2) {

int c] = 1 3

c[42] = 899; /S generate an out-of-bounds exception

gtch(hArrayIndexfutOfBoundsException &) |
yatem.out .println{"Array index out-of-bounds: " + e}

i n =

} catch{ArithmeticException e)

System.out.println{"Divide by 0: ™ + e}:
}
C:h>java HestTry
Divide by 0: jawa.lang.ArithmeticException: [/ by =zero

C:ixjava HestTry One
a

Diwide by 0: java.lang.ArithmeticException: / by =zero
C:h>java HestTry One Two

a =2

Array index out-of-bounds:

i
T T}

java.lang.ArrayIndexOutOfBoundsException: 42

throw
it is possible for your program to throw an exception explicitly, using the throw statement.
The general form of throw is shown here:
throw Throwablelnstance;
Here, Throwablelnstance must be an object of type Throwable or a subclass of Throwable.

¢ Demonstrate throw.
class ThrowDemo |

static volid demoproc()
try {
hrow new NullPointerException ("demo™);
} catchiHullFointerException e)

println{"Caught inside demoproc.™);:
i ff rethrow the exception

T i
&
u]
E
m

public static wvold main(String args[]) {

try |
demoproc () ;
} catch(HullPointerException =)

System.out.println{"Recaught: " + &);

OUTPUT

Caught inside demoproc.
Recaught: jawva.lang.WullFointerException: demo
Throws

A throws clause lists the types of exceptions that a method might throw. This is necessary for
all exceptions, except those of type Error or RuntimeException, or any of their subclasses. All
other exceptions that a method can throw must be declared in the throws clause. If they are
not, a compile-time error will result.

This is the general form of a method declaration that includes a throws clause:

Iy foe method-namel Jr}m'ruﬂr.l'rr-nr!'.ﬂ'] throws e-_'m-g.-.’irm-f isl

{
// body of method
}
exception-list is a comma-separated list of the exceptions that a method can throw.
Following is an example of an incorrect program that tries to throw an exception that it does
not catch. Because the program does not specify a throws clause to declare this fact, the
program will not compile.
f This program contains an error and will not compile.
class ThrowsDemo |
static wvoid throwlne()

System.out.println{"Inside throwOne."};
throw new IllegalAccessException ("demo™) ;

public static woid main(S5tring args[]) {

throwlne () ;

To make this example compile, you need to make two changes. First, you need to declare
that throwOne() throws lllegalAccessException. Second, main() must define a try / catch
statement that catches this exception.

f4 This 1s now correct.
class ThrowsDemo |
static vold throwlne() throws IllegalbhccessException |
Eystem.out.println{™"Inside throwOne.");
throw new IllegalAccessException ("demc™):

public static vold main(String args[]) |
try |
throwOne{) ;
} zatch (IllegalhccessException) |
Syatem.out.println{"Caught " + e);

]

Here is the ontput generated by running this example program:

inside throwline
caught jawva.lang.IllegallccessException: demo

Finally

finally creates a block of code that will be executed after a try /catch block has completed and
before the code following the try/catch block. The finally block will execute whether or not an
exception is thrown. If an exception is thrown, the finally block will execute even if no catch
statement matches the exception.

{ Demonstrate finally.
clasa FinallyDemo |
/{ Through an exception out of the method.
static void prochAl) |
try |
System.ocut.println{"inside proch™);
throw new RuntimeBException ("demo™}) :
} f£finally
System.cut.println{"prochA's finally™):

/{ Return from within a try bleck.
static wvoid procB() |
try {
System.ocut.println{"inside procB™};
return;
} £inally |
System.ocut.println{"procBE's £inally™):

]

/4 Execute a try block normally.
static wvoid procCl() |
try {
System.ocut.println{"inside procC™};
} £inally |
System.ocut.println{"procC's finally™):

]

public static woid main(String args[]) |
try |
prochil:
} catch (Exception e) |
System.ocut.println{"Exception caught™);

b

procB():
procC{};

Here is the output generated by the preceding program:

inside proch
proch's finally
Exception caught
inside procB
procE's finally
inside procC
procC’'s finally

Java’s Built-in Exceptions

Exception

AnthmeticException

Anthmetic error, such as divide-by-sero.

ArrayIndexOuwtOfBoundsException

Array index s out-of-bounds.

ArrayStoreException

Assignment to an array element of an incompatible
tvpe.

ClassCastException

Invalid cast.

EnumConstantNotPresentException

An attempt is made to use an undefined
enumeration value.

MlegalArgumentException

Megal argument used to invoke a method.

NlegalMomorStateExcepion

Megal monitor operation, such as waling on an

unlacked thread.

MegalStateException

Environment or application is in incorrect state.

Mlegal ThreadStateException

Requested operation not compatible with current
thread state.

IndexCutCHBoundsException

Some type of index is out-oFbounds,

MegativeArraySizeException

Adray created with a negative size.

MullPointerException

Invalid use of a null reference.

MNumberFormatException

Invalid conversion of a string to a numeric format.

SecurityException

Attemnpt to violate security.

StringlndexOutOfBounds

Attempt to imdex outside the bounds of a string.

TvpeNotPresemException

Type not found.

UnsupportedOperationException

An L1|151.|T.1]'_K1ru:tl operation was encountered.

Tabkl= 4Mm 4 [P | R TR B N e T R S © R T T P [TR LR . R .
Exception Meaning
ClassNotFoundException Class not found.
CloneMNotSupported Exception Attempt to clone an object that does not implement the

Cloneable interface.

MegalAccessException Access to a class s denied.
Instantiation Exception Attemnpt to create an object of an abstract class or imterface.
Interrupted Exception One thread has been interrupted by another thread.
MNoSuchFieldException A requested field does not exist.
MoSuchMethodException A requested method does not exist.
ReflectiveOperationException Superclass of reflection-related exceptions. {Added

by JDK 7.)

